5,478 research outputs found

    omniCLIP: probabilistic identification of protein-RNA interactions from CLIP-seq data

    Get PDF
    CLIP-seq methods allow the generation of genome-wide maps of RNA binding protein - RNA interaction sites. However, due to differences between different CLIP-seq assays, existing computational approaches to analyze the data can only be applied to a subset of assays. Here, we present a probabilistic model called omniCLIP that can detect regulatory elements in RNAs from data of all CLIP-seq assays. omniCLIP jointly models data across replicates and can integrate background information. Therefore, omniCLIP greatly simplifies the data analysis, increases the reliability of results and paves the way for integrative studies based on data from different assays

    Global identification of functional microRNA-mRNA interactions in Drosophila

    Get PDF
    MicroRNAs (miRNAs) are key mediators of post-transcriptional gene expression silencing. So far, no comprehensive experimental annotation of functional miRNA target sites exists in Drosophila. Here, we generated a transcriptome-wide in vivo map of miRNA-mRNA interactions in Drosophila melanogaster, making use of single nucleotide resolution in Argonaute1 (AGO1) crosslinking and immunoprecipitation (CLIP) data. Absolute quantification of cellular miRNA levels presents the miRNA pool in Drosophila cell lines to be more diverse than previously reported. Benchmarking two CLIP approaches, we identify a similar predictive potential to unambiguously assign thousands of miRNA-mRNA pairs from AGO1 interaction data at unprecedented depth, achieving higher signal-to-noise ratios than with computational methods alone. Quantitative RNA-seq and sub-codon resolution ribosomal footprinting data upon AGO1 depletion enabled the determination of miRNA-mediated effects on target expression and translation. We thus provide the first comprehensive resource of miRNA target sites and their quantitative functional impact in Drosophila

    Complexome analysis of the nitrite - dependent methanotroph Methylomirabilis lanthanidiphila

    No full text
    The atmospheric concentration of the potent greenhouse gases methane and nitrous oxide (N2O) has increased drastically during the last century. Methylomirabilis bacteria can play an import role in controlling the emission of these two gases from natural ecosystems, by oxidizing methane to CO2 and reducing nitrite to N2 without producing N2O. These bacteria have an anaerobic metabolism, but are proposed to possess an oxygen-dependent pathway for the activation of methane. Methylomirabilis bacteria reduce nitrite to NO, and are proposed to dismutate NO into O2 and N2 by a putative NO dismutase (NO-D). The O2 produced in the cell can then be used for the activation of methane by a particulate methane monooxygenase. So far, the metabolic model of Methylomirabilis bacteria was based mainly on (meta)genomics and physiological experiments. Here we applied a complexome profiling approach to determine which of the proposed enzymes are actually expressed in Methylomirabilis lanthanidiphila. To validate the metabolic model, we focused on enzymes involved in respiration, and nitrogen and C1 transformation. All complexes proposed to be involved in nitrite-dependent methane oxidation, were identified in M. lanthanidiphila, including the putative NO-D. Furthermore, several complexes involved in nitrate reduction/nitrite oxidation and NO reduction were detected, which likely play a role in detoxification and redox homeostasis. In conclusion, complexome profiling validated the expression and composition of enzymes proposed to be involved in the energy, methane and nitrogen metabolism of M. lanthanidiphila, thereby further corroborating the metabolically unique and environmentally relevant process of nitrite-dependent methane oxidation

    Triggering with the ALICE TRD

    Get PDF

    The mRNA-bound proteome of the early fly embryo

    Get PDF
    Early embryogenesis is characterized by the maternal to zygotic transition (MZT), in which maternally deposited messenger RNAs are degraded while zygotic transcription begins. Before the MZT, post-transcriptional gene regulation by RNA-binding proteins (RBPs) is the dominant force in embryo patterning. We used two mRNA interactome capture methods to identify RBPs bound to polyadenylated transcripts within the first two hours of D. melanogaster embryogenesis. We identified a high-confidence set of 476 putative RBPs and confirmed RNA-binding activities for most of 24 tested candidates. Most proteins in the interactome are known RBPs or harbor canonical RBP features, but 99 exhibited previously uncharacterized RNA-binding activity. mRNA-bound RBPs and TFs exhibit distinct expression dynamics, in which the newly identified RBPs dominate the first two hours of embryonic development. Integrating our resource with in situ hybridization data from existing databases showed that mRNAs encoding RBPs are enriched in posterior regions of the early embryo, suggesting their general importance in posterior patterning and germ cell maturation

    The impact of health programmes to prevent vertical transmission of HIV. Advances, emerging health challenges and research priorities for children exposed to or living with HIV: Perspectives from South Africa

    Get PDF
    Over the past three decades, tremendous global progress in preventing and treating paediatric HIV infection has been achieved. This paper highlights the emerging health challenges of HIV-exposed uninfected (HEU) children and the ageing population of children living with HIV (CLHIV), summarises programmatic opportunities for care, and highlights currently conducted research and remaining research priorities in high HIV-prevalence settings such as South Africa. Emerging health challenges amongst HEU children and CLHIV include preterm delivery, suboptimal growth, neurodevelopmental delay, mental health challenges, infectious disease morbidity and mortality, and acute and chronic respiratory illnesses including tuberculosis, pneumonia, bronchiectasis and lymphocytic interstitial pneumonitis. CLHIV and HEU children require three different categories of care: (i) optimal routine child health services applicable to all children; (ii) routine care currently provided to all HEU children and CLHIV, such as HIV testing or viral load monitoring, respectively, and (iii) additional care for CLHIV and HEU children who may have growth, neurodevelopmental, behavioural, cognitive or other deficits such as chronic lung disease, and require varying degrees of specialised care. However, the translation thereof into practice has been hampered by various systemic challenges, including shortages of trained healthcare staff, suboptimal use of the patient-held child’s Road to Health book for screening and referral purposes, inadequate numbers and distribution of therapeutic staff, and shortages of assistive/diagnostic devices, where required. Additionally, in low-middle-income high HIV-prevalence settings, there is a lack of evidence-based solutions/models of care to optimise health amongst HEU and CLHIV. Current research priorities include understanding the mechanisms of preterm birth in women living with HIV to optimise preventive interventions; establishing pregnancy pharmacovigilance systems to understand the short-, medium- and long-term impact of in utero ART and HIV exposure; understanding the role of preconception maternal ART on HEU child infectious morbidity and long-term growth and neurodevelopmental trajectories in HEU children and CLHIV, understanding mental health outcomes and support required in HEU children and CLHIV through childhood and adolescence; monitoring HEU child morbidity and mortality compared with HIV-unexposed children; monitoring outcomes of CLHIV who initiated ART very early in life, sometimes with suboptimal ART regimens owing to medication formulation and registration issues; and testing sustainable models of care for HEU children and CLHIV including later reproductive care and support

    In-Medium Properties of Hadrons - Observables II

    Full text link
    In this review we discuss the observable consequences of in-medium changes of hadronic properties in reactions with elementary probes, and in particular photons, on nuclei. After an outline of the theoretical method used we focus on a discussion of actual observables in photonuclear reactions; we discuss in detail 2π2\pi- and vector-meson production. We show that the 2π02\pi^0 photoproduction data can be well described by final state interactions of the pions produced whereas the semi-charged π0π±\pi^0\pi^\pm channel exhibits a major discrepancy with theory. For ω\omega production on nuclei in the TAPS/CB@ELSA experiment we analyse the π0γ\pi^0\gamma decay channel, and illustrate the strength of the method by simulating experimental acceptance problems. Completely free of final state interactions is dilepton production in the few GeV range. We show that the sensitivity of this decay channel to changes of hadronic properties in medium in photonuclear reactions on nuclei is as large as in ultrarelativistic heavy ion collisions and make predictions for the on-going G7 experiment at JLAB. Finally we discuss that hadron production in nuclei at 10 -- 20 GeV photon energies can give important information on the hadronization process, and in particular on the time-scales involved. We show here detailed calculations for the low-energy (12 GeV) run at HERMES and predictions for planned experiments at JLAB.Comment: Invited Talk by U. Mosel, Proceedings of the Int. School on Nuclear Physics, 26th Course, "Lepton scattering and the structure of hadrons and nuclei", Erice (Sicily), September 16th-24th, 2004, short piece of text adde

    Deciphering human ribonucleoprotein regulatory networks

    Get PDF
    RNA-binding proteins (RBPs) control and coordinate each stage in the life cycle of RNAs. Although in vivo binding sites of RBPs can now be determined genome-wide, most studies typically focused on individual RBPs. Here, we examined a large compendium of 114 high-quality transcriptome-wide in vivo RBP-RNA cross-linking interaction datasets generated by the same protocol in the same cell line and representing 64 distinct RBPs. Comparative analysis of categories of target RNA binding preference, sequence preference, and transcript region specificity was performed, and identified potential posttranscriptional regulatory modules, i.e. specific combinations of RBPs that bind to specific sets of RNAs and targeted regions. These regulatory modules represented functionally related proteins and exhibited distinct differences in RNA metabolism, expression variance, as well as subcellular localization. This integrative investigation of experimental RBP-RNA interaction evidence and RBP regulatory function in a human cell line will be a valuable resource for understanding the complexity of post-transcriptional regulation
    corecore