171 research outputs found

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    Sources of variation for indoor nitrogen dioxide in rural residences of Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unprocessed biomass fuel is the primary source of indoor air pollution (IAP) in developing countries. The use of biomass fuel has been linked with acute respiratory infections. This study assesses sources of variations associated with the level of indoor nitrogen dioxide (NO<sub>2</sub>).</p> <p>Materials and methods</p> <p>This study examines household factors affecting the level of indoor pollution by measuring NO<sub>2</sub>. Repeated measurements of NO<sub>2 </sub>were made using a passive diffusive sampler. A <it>Saltzman </it>colorimetric method using a spectrometer calibrated at 540 nm was employed to analyze the mass of NO<sub>2 </sub>on the collection filter that was then subjected to a mass transfer equation to calculate the level of NO<sub>2 </sub>for the 24 hours of sampling duration. Structured questionnaire was used to collect data on fuel use characteristics. Data entry and cleaning was done in EPI INFO version 6.04, while data was analyzed using SPSS version 15.0. Analysis of variance, multiple linear regression and linear mixed model were used to isolate determining factors contributing to the variation of NO<sub>2 </sub>concentration.</p> <p>Results</p> <p>A total of 17,215 air samples were fully analyzed during the study period. Wood and crop were principal source of household energy. Biomass fuel characteristics were strongly related to indoor NO<sub>2 </sub>concentration in one-way analysis of variance. There was variation in repeated measurements of indoor NO<sub>2 </sub>over time. In a linear mixed model regression analysis, highland setting, wet season, cooking, use of fire events at least twice a day, frequency of cooked food items, and interaction between ecology and season were predictors of indoor NO<sub>2 </sub>concentration. The volume of the housing unit and the presence of kitchen showed little relevance in the level of NO<sub>2 </sub>concentration.</p> <p>Conclusion</p> <p>Agro-ecology, season, purpose of fire events, frequency of fire activities, frequency of cooking and physical conditions of housing are predictors of NO<sub>2 </sub>concentration. Improved kitchen conditions and ventilation are highly recommended.</p

    Environmental and Molecular Mutagenesis Meeting Report Assessing Human Germ-Cell Mutagenesis in the Post-Genome Era: A Celebration of the Legacy of William Lawson (Bill) Russell

    Get PDF
    ABSTRACT Although numerous germ-cell mutagens have been identified in animal model systems, to date, no human germ-cell mutagens have been confirmed. Because the genomic integrity of our germ cells is essential for the continuation of the human species, a resolution of this enduring conundrum is needed. To facilitate such a resolution, we organized a workshop at The Jackson Laboratory in Bar Harbor, Maine on September [28][29][30] 2004. This interactive workshop brought together scientists from a wide range of disciplines to assess the applicability of emerging molecular methods for genomic analysis to the field of human germ-cell mutagenesis. Participants recommended that focused, coordinated human germ-cell mutation studies be conducted in relation to important societal exposures. Because cancer survivors represent a unique cohort with well-defined exposures, there was a consensus that studies should be designed to assess the mutational impact on children born to parents who had received certain types of mutagenic cancer chemotherapy prior to conceiving their children. Within this high-risk cohort, parents and children could be evaluated for inherited changes in (a) gene sequences and chromosomal structure, (b) repeat sequences and minisatellite regions, and (c) global gene expression and chromatin. Participants also recommended studies to examine trans-generational effects in humans involving mechanisms such as changes in imprinting and methylation patterns, expansion of nucleotide repeats, or induction of mitochondrial DNA mutations. Workshop participants advocated establishment of a bio-bank of human tissue samples that could be used to conduct a multiple-endpoint, comprehensive, and collaborative effort to detect exposure-induced heritable alterations in the human genome. Appropriate animal models of human germ-cell mutagenesis should be used in parallel with human studies to provide insights into the mechanisms of mammalian germ-cell mutagenesis. Finally, participants recommended that 4 scientific specialty groups be convened to address specific questions regarding the potential germ-cell mutagenicity of environmental, occupational, and lifestyle exposures. Strong support from relevant funding agencies and engagement of scientists outside the fields of genomics and germ-cell mutagenesis will be required to launch a full-scale assault on some of the most pressing and enduring questions in environmental mutagenesis: Do human germ-cell mutagens exist, what risk do they pose to future generations, and are some parents at higher risk than others for acquiring and transmitting germ-cell mutations?

    Design and study protocol of the maternal smoking cessation during pregnancy study, (M-SCOPE)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maternal smoking is the most significant cause of preventable complications during pregnancy, with smoking cessation during pregnancy shown to increase birth weight and reduce preterm birth among pregnant women who quit smoking. Taking into account the fact that the number of women who smoke in Greece has increased steadily throughout the previous decade and that the prevalence of smoking among Greek females is one of the highest in the world, smoking cessation should be a top priority among Greek health care professionals.</p> <p>Methods/Design</p> <p>The Maternal Smoking Cessation during Pregnancy Study (M-SCOPE), is a Randomized Control Trial (RCT) that aims to test whether offering Greek pregnant smokers a high intensity intervention increases smoking cessation during the third trimester of pregnancy, when compared to a low intensity intervention. Prospective participants will be pregnant smokers of more than 5 cigarettes per week, recruited up to the second trimester of pregnancy. Urine samples for biomarker analysis of cotinine will be collected at three time points: at baseline, at around the 32<sup>nd </sup>week of gestation and at six months post partum. The control group/low intensity intervention will include: brief advice for 5 minutes and a short leaflet, while the experimental group/intensive intervention will include: 30 minutes of individualized cognitive-behavioural intervention provided by a trained health professional and a self-help manual especially tailored for smoking cessation during pregnancy, while counselling will be based on the ''5 As.'' After childbirth, the infants' birth weight, gestational age and any other health related complications during pregnancy will be recorded. A six months post-partum a follow up will be performed in order to re-assess the quitters smoking status.</p> <p>Discussion</p> <p>If offering pregnant smokers a high intensity intervention for smoking cessation increases the rate of smoking cessation in comparison to a usual care low intensity intervention in Greek pregnant smokers, such a scheme if beneficial could be implemented successfully within clinical practice in Greece.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01210118">NCT01210118</a></p

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore