358 research outputs found

    Time-dependent density functional theory beyond the adiabatic local density approximation

    Get PDF
    In the current density functional theory of linear and nonlinear time-dependent phenomena, the treatment of exchange and correlation beyond the level of the adiabatic local density approximation is shown to lead to the appearance of viscoelastic stresses in the electron fluid. Complex and frequency-dependent viscosity/elasticity coefficients are microscopically derived and expressed in terms of properties of the homogeneous electron gas. As a first consequence of this formalism, we provide an explicit formula for the linewidths of collective excitations in electronic systems.Comment: RevTeX, 4 page

    Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory

    Full text link
    On the basis of a new ab initio, all-electron response scheme, formulated within time-dependent density-functional theory, we solve the puzzle posed by the anomalous dispersion of the plasmon linewidth in K. The key damping mechanism is shown to be decay into particle-hole pairs involving empty states of d-symmetry. While the effect of many-particle correlations is small, the correlations built into the "final-state" -d-bands play an important, and novel, role ---which is related to the phase-space complexity associated with these flat bands. Our case study of plasmon lifetime in K illustrates the importance of ab initio paradigms for the study of excitations in correlated-electron systems.Comment: 12 pages, 4 figures, for html browsing see http://web.utk.edu/~weik

    Dynamic exchange-correlation potentials for the electron gas in dimensionality D=3 and D=2

    Full text link
    Recent progress in the formulation of a fully dynamical local approximation to time-dependent Density Functional Theory appeals to the longitudinal and transverse components of the exchange and correlation kernel in the linear current-density response of the homogeneous fluid at long wavelength. Both components are evaluated for the electron gas in dimensionality D=3 and D=2 by an approximate decoupling in the equation of motion for the current density, which accounts for processes of excitation of two electron-hole pairs. Each pair is treated in the random phase approximation, but the role of exchange and correlation is also examined; in addition, final-state exchange processes are included phenomenologically so as to satisfy the exactly known high-frequency behaviours of the kernel. The transverse and longitudinal spectra involve the same decay channels and are similar in shape. A two-plasmon threshold in the spectrum for two-pair excitations in D=3 leads to a sharp minimum in the real part of the exchange and correlation kernel at twice the plasma frequency. In D=2 the same mechanism leads to a broad spectral peak and to a broad minimum in the real part of the kernel, as a consequence of the dispersion law of the plasmon vanishing at long wavelength. The numerical results have been fitted to simple analytic functions.Comment: 13 pages, 11 figures included. Accepted for publication in Phys. Rev.

    Plasmonic excitations in noble metals: The case of Ag

    Get PDF
    The delicate interplay between plasmonic excitations and interband transitions in noble metals is described by means of {\it ab initio} calculations and a simple model in which the conduction electron plasmon is coupled to the continuum of electron-hole pairs. Band structure effects, specially the energy at which the excitation of the dd-like bands takes place, determine the existence of a subthreshold plasmonic mode, which manifests itself in Ag as a sharp resonance at 3.8 eV. However, such a resonance is not observed in the other noble metals. Here, this different behavior is also analyzed and an explanation is provided.Comment: 9 pages, 8 figure

    Architecture of soil microaggregates: Advanced methodologies to explore properties and functions

    Get PDF
    The functions of soils are intimately linked to their three-dimensional pore space and the associated biogeochemical interfaces, mirrored in the complex structure that developed during pedogenesis. Under stress overload, soil disintegrates into smaller compound structures, conventionally named aggregates. Microaggregates (<250 ”m) are recognized as the most stable soil structural units. They are built of mineral, organic, and biotic materials, provide habitats for a vast diversity of microorganisms, and are closely involved in the cycling of matter and energy. However, exploring the architecture of soil microaggregates and their linkage to soil functions remains a challenging but demanding scientific endeavor. With the advent of complementary spectromicroscopic and tomographic techniques, we can now assess and visualize the size, composition, and porosity of microaggregates and the spatial arrangement of their interior building units. Their combinations with advanced experimental pedology, multi-isotope labeling experiments, and computational approaches pave the way to investigate microaggregate turnover and stability, explore their role in element cycling, and unravel the intricate linkage between structure and function. However, spectromicroscopic techniques operate at different scales and resolutions, and have specific requirements for sample preparation and microaggregate isolation; hence, special attention must be paid to both the separation of microaggregates in a reproducible manner and the synopsis of the geography of information that originates from the diverse complementary instrumental techniques. The latter calls for further development of strategies for synlocation and synscaling beyond the present state of correlative analysis. Here, we present examples of recent scientific progress and review both options and challenges of the joint application of cutting-edge techniques to achieve a sophisticated picture of the properties and functions of soil microaggregates

    Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    Get PDF
    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 ±\pm 0.016 (stat) ±\pm 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GWth_{th} reactors. The results were obtained from a single 10 m3^3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 ±\pm 0.041 (stat) ±\pm 0.030 (syst), or, at 90% CL, 0.015 << \sang  <\ < 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments

    All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data

    Get PDF
    Since the recent detection of an astrophysical flux of high energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over seven years from 2008--2015. The discovery potential of the analysis in the northern sky is now significantly below EÎœ2dϕ/dEÎœ=10−12 TeV cm−2 s−1E_\nu^2d\phi/dE_\nu=10^{-12}\:\mathrm{TeV\,cm^{-2}\,s^{-1}}, on average 38%38\% lower than the sensitivity of the previously published analysis of four years exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.Comment: 19 pages, 17 figures, 3 tables; ; submitted to The Astrophysical Journa

    Neutrinos and Cosmic Rays Observed by IceCube

    Full text link
    The core mission of the IceCube Neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux, and constrains its origin. In addition, the spectrum, composition and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of IceCube data, and their implications on our understanding of cosmic rays.Comment: Review article, to appear in Advances in Space Research, special issue "Origins of Cosmic Rays
    • 

    corecore