79 research outputs found

    Therapeutic jurisprudence and procedural justice in Scottish drug courts

    Get PDF
    Scotland, like other Western jurisdictions, has recently witnessed the development of problem-solving courts aimed at responding more effectively to issues that underlie certain types of offending behaviour. The first to be established were two pilot Drug Courts which drew upon experience of Scottish Drug Treatment and Testing Orders. In common with Drug Courts elsewhere, the Scottish pilots combined treatment, drug testing, supervision and judicial oversight. This article focuses upon the role of judicial involvement in the ongoing review of Drug Court participants’ progress, drawing upon court observation and interviews with offenders and Drug Court professionals. Drug Court dialogues were typically encouraging on the part of sheriffs, aimed at recognising and reinforcing the progress made by participants and motivating then to maintain and build upon their achievements to date, while participants were generally responsive to the positive feedback they received from the sheriffs as their orders progressed. Interactions within the Scottish Drug Courts reflect key features of procedural justice (Tyler, 1990), including ethicality, efforts to be fair and representation. By contributing to enhanced perceptions of procedural justice, Drug Court dialogues may, it is argued, increase the perceived legitimacy of the court and by so doing encourage increased compliance with treatment and desistance from crime

    Nearby quasar remnants and ultra-high energy cosmic rays

    Get PDF
    As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies >40> 40 EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical Review

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    A Review of the fossil record of turtles of the clade Baenidae

    Get PDF
    The fossil record of the turtle clade Baenidae ranges from the Early Cretaceous (Aptian—Albian) to the Eocene. The group is present throughout North America during the Early Cretaceous, but is restricted to the western portions of the continents in the Late Cretaceous and Paleogene. No credible remains of the clade have been reported outside of North America to date. Baenids were warmadapted freshwater aquatic turtles that supported high levels of diversity at times through niche partitioning, particularly by adapting to a broad range of dietary preferences ranging from omnivorous to molluscivorous. Current phylogenies place Baenidae near the split of crown-group Testudines. Within Baenidae three more inclusive, named clades are recognized: Baenodda, Palatobaeninae and Eubaeninae. A taxonomic review of the group concludes that of 49 named taxa, 30 are nomina valida, 12 are nomina invalida and 7 are nomina dubia

    Spectropolarimetry of the thermonuclear supernova SN 2021rhu: high calcium polarization 79 Days after peak luminosity

    Get PDF
    We report spectropolarimetric observations of the Type Ia supernova (SN) SN 2021rhu at four epochs: −7, +0, +36, and +79 days relative to its B-band maximum luminosity. A wavelength-dependent continuum polarization peaking at 3890 ± 93 Å and reaching a level of pmax=1.78%±0.02{p}_{\max }\,=\,1.78 \% \pm 0.02% was found. The peak of the polarization curve is bluer than is typical in the Milky Way, indicating a larger proportion of small dust grains along the sight line to the SN. After removing the interstellar polarization, we found a pronounced increase of the polarization in the Ca ii near-infrared triplet, from ∼0.3% at day −7 to ∼2.5% at day +79. No temporal evolution in high-resolution flux spectra across the Na i D and Ca ii H and K features was seen from days +39 to +74, indicating that the late-time increase in polarization is intrinsic to the SN as opposed to being caused by scattering of SN photons in circumstellar or interstellar matter. We suggest that an explanation for the late-time rise of the Ca ii near-infrared triplet polarization may be the alignment of calcium atoms in a weak magnetic field through optical excitation/pumping by anisotropic radiation from the SN

    An External δ-Carbonic Anhydrase in a Free-Living Marine Dinoflagellate May Circumvent Diffusion-Limited Carbon Acquisition1[W]

    No full text
    The oceans globally constitute an important sink for carbon dioxide (CO2) due to phytoplankton photosynthesis. However, the marine environment imposes serious restraints to carbon fixation. First, the equilibrium between CO2 and bicarbonate (HCO3−) is pH dependent, and, in normal, slightly alkaline seawater, [CO2] is typically low (approximately 10 μm). Second, the rate of CO2 diffusion in seawater is slow, so, for any cells unable to take up bicarbonate efficiently, photosynthesis could become carbon limited due to depletion of CO2 from their immediate vicinity. This may be especially problematic for those dinoflagellates using a form II Rubisco because this form is less oxygen tolerant than the usually found form I enzyme. We have identified a carbonic anhydrase (CA) from the free-living marine dinoflagellate Lingulodinium polyedrum that appears to play a role in carbon acquisition. This CA shares 60% sequence identity with δ-class CAs, isoforms so far found only in marine algae. Immunoelectron microscopy indicates that this enzyme is associated exclusively with the plasma membrane. Furthermore, this enzyme appears to be exposed to the external medium as determined by whole-cell CA assays and vectorial labeling of cell surface proteins with 125I. The fixation of 14CO2 is strongly pH dependent, suggesting preferential uptake of CO2 rather than HCO3−, and photosynthetic rates decrease in the presence of 1 mm acetazolamide, a non-membrane-permeable CA inhibitor. This constitutes the first CA identified in the dinoflagellates, and, taken together, our results suggest that this enzyme may help to increase CO2 availability at the cell surface

    Carbon Status Constrains Light Acclimation in the Cyanobacterium Synechococcus elongatus

    No full text
    Acclimation to one environmental factor may constrain acclimation to another. Synechococcus elongatus (sp. PCC7942), growing under continuous light in high inorganic carbon (Ci; approximately 4 mm) and low-Ci (approximately 0.02 mm) media, achieve similar photosynthetic and growth rates under continuous low or high light. During acclimation from low to high light, however, high-Ci cells exploit the light increase by accelerating their growth rate, while low-Ci cells maintain the prelight shift growth rate for many hours, despite increased photosynthesis under the higher light. Under increased light, high-Ci cells reorganize their photosynthetic apparatus by shrinking the PSII pool and increasing Rubisco pool size, thus decreasing the photosynthetic source-to-sink ratio. Low-Ci cells also decrease their reductant source-to-sink ratio to a similar level as the high-Ci cells, but do so only by increasing their Rubisco pool. Low-Ci cells thus invest more photosynthetic reductant into maintaining their larger photosystem pool and increasing their Rubisco pool at the expense of population growth than do high-Ci cells. In nature, light varies widely over minutes to hours and is ultimately limited by daylength. Photosynthetic acclimation in S. elongatus occurs in both high and low Ci, but low-Ci cells require more time to achieve acclimation. Cells that can tolerate low Ci do so at the expense of slower photosynthetic acclimation. Such differences in rates of acclimation relative to rates of change in environmental parameters are important for predicting community productivity under variable environments

    Rotor - Stator Broadband Noise Prediction

    No full text
    corecore