16 research outputs found

    Kappa free light chains is a valid tool in the diagnostics of MS : A large multicenter study

    Get PDF
    To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS). We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mixture modeling was used to define a cut-off for KFLC and LFLC indexes. The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI = 4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB. Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS

    Stability of soluble adhesion molecules, selectins, and C-reactive protein at various temperatures: implications for epidemiological and large-scale clinical studies.

    No full text
    BACKGROUND: We assessed the impact of sample storage conditions on soluble vascular cell adhesion molecules (sVCAM), soluble intracellular adhesion molecules (sICAM-1), soluble (s)E-selectin, C-reactive protein (CRP), and sP-selectin. METHODS: Markers were measured by ELISA in venous blood from 10 healthy volunteers on aliquots stored as plasma or whole blood at 4, 21, or 30 degrees C for 1-5 days and after 1-5 freeze-thaw cycles. We compared results on these samples to results for samples processed immediately and stored at -80 degrees C. Statistical models assessed time-related effects and effects of postprocessing conditions. RESULTS: Using an upper limit of 10% variation from baseline with P &gt;0.05, we found that stability duration in plasma was 5 days for sVCAM-1 and sICAM-1 and at least 2 days for sE-selectin at 4, 21, and 30 degrees C and 5 days for CRP at 4 and 21 degrees C and 1 day at 30 degrees C. Stability duration in whole blood was 5 days for sVCAM-1 and sICAM-1 and at least 2 days for sE-selectin at 4, 21, and 30 degrees C and 5 days for CRP at 4 and 21 degrees C and 2 days at 30 degrees C. sP-selectin was not stable in plasma or whole blood. sICAM-1, sVCAM-1, CRP, and sE-selectin were stable after 5 freeze-thaw cycles. CONCLUSIONS: sVCAM-1, sICAM-1, and CRP are stable in plasma or whole blood at 4 and 21 degrees C for at least 3 days and sE-selectin for 2 days. sP-selectin is not stable and therefore requires immediate assay

    Multicenter Analytical Validation of Aβ40 Immunoassays

    Get PDF
    BACKGROUND Before implementation in clinical practice, biomarker assays need to be thoroughly analytically validated. There is currently a strong interest in implementation of the ratio of amyloid-β peptide 1-42 and 1-40 (Aβ42/Aβ40) in clinical routine. Therefore, in this study, we compared the analytical performance of six assays detecting Aβ40 in cerebrospinal fluid (CSF) in six laboratories according to a recently standard operating procedure (SOP) developed for implementation of ELISA assays for clinical routine. METHODS Aβ40 assays of six vendors were validated in up to three centers per assay according to recently proposed international consensus validation protocols. The performance parameters included sensitivity, precision, dilutional linearity, recovery, and parallelism. Inter-laboratory variation was determined using a set of 20 CSF samples. In addition, test results were used to critically evaluate the SOPs that were used to validate the assays. RESULTS Most performance parameters of the different Aβ40 assays were similar between labs and within the predefined acceptance criteria. The only exceptions were the out-of-range results of recovery for the majority of experiments and of parallelism by three laboratories. Additionally, experiments to define the dilutional linearity and hook-effect were not executed correctly in part of the centers. The inter-laboratory variation showed acceptable low levels for all assays. Absolute concentrations measured by the assays varied by a factor up to 4.7 for the extremes. CONCLUSION All validated Aβ40 assays appeared to be of good technical quality and performed generally well according to predefined criteria. A novel version of the validation SOP is developed based on these findings, to further facilitate implementation of novel immunoassays in clinical practice

    Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study

    Get PDF
    Objective: To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS). Methods: We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mixture modeling was used to define a cut-off for KFLC and LFLC indexes. Results: The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI = 4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85;p &lt; 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96;p &lt; 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB. Conclusion: Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS

    Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study.

    No full text
    OBJECTIVE: To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS). METHODS: We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mixture modeling was used to define a cut-off for KFLC and LFLC indexes. RESULTS: The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI = 4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB. CONCLUSION: Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS.status: publishe

    Serial CSF sampling in Alzheimer's disease: specific versus non-specific markers

    Get PDF
    AbstractIn this longitudinal study we investigated change over time in cerebrospinal fluid (CSF) levels of amyloid-beta 40 and 42 (Aβ40 and Aβ42), total tau (tau), tau phosphorylated at threonine 181 (ptau-181), isoprostane, neurofilaments heavy (NfH) and light (NfL). Twenty-four nondemented subjects, 62 mild cognitive impairment (MCI) and 68 Alzheimer's disease (AD) patients underwent 2 lumbar punctures, with minimum interval of 6, and a mean ± SD of 24 ± 13 months. Linear mixed models were used to assess change over time. Amyloid-beta 42, tau, and tau phosphorylated at threonine 181, differentiated between diagnosis groups (p < 0.05), whereas isoprostane, neurofilaments heavy, and NfL did not. In contrast, effects of follow-up time were only found for nonspecific CSF biomarkers: levels of NfL decreased, and levels of isoprostane, amyloid-beta 40, and tau increased over time (p < 0.05). Isoprostane showed the largest increase. In addition, increase in isoprostane was associated with progression of mild cognitive impairment to AD, and with cognitive decline as reflected by change in Mini Mental State Examination (MMSE). Contrary to AD-specific markers, nonspecific CSF biomarkers, most notably isoprostane, showed change over time. These markers could potentially be used to monitor disease progression in AD
    corecore