20 research outputs found

    Summertime Influence of Asian Pollution in the Free Troposphere over North America

    Get PDF
    We analyze aircraft observations obtained during INTEX-A (1 July 14 - August 2004) to examine the summertime influence of Asian pollution in the free troposphere over North America. By applying correlation analysis and Principal Component Analysis (PCA) to the observations between 6-12 km, we find dominant influences from recent convection and lightning (13 percent of observations), Asia (7 percent), the lower stratosphere (7 percent), and boreal forest fires (2 percent), with the remaining 71 percent assigned to background. Asian airmasses are marked by high levels of CO, O3, HCN, PAN, acetylene, benzene, methanol, and SO4(2-). The partitioning of reactive nitrogen species in the Asian plumes is dominated by peroxyacetyl nitrate (PAN) (approximately 600 pptv), with varying NO(x)/HNO3 ratios in individual plumes consistent with different plumes ages ranging from 3 to 9 days. Export of Asian pollution in warm conveyor belts of mid-latitude cyclones, deep convection, and lifting in typhoons all contributed to the five major Asian pollution plumes. Compared to past measurement campaigns of Asian outflow during spring, INTEX-A observations display unique characteristics: lower levels of anthropogenic pollutants (CO, propane, ethane, benzene) due to their shorter summer lifetimes; higher levels of biogenic tracers (methanol and acetone) because of a more active biosphere; as well as higher levels of PAN, NO(x), HNO3, and O3 (more active photochemistry possibly enhanced by injection of lightning NO(x)). The high delta O3/delta CO ratio (0.76 mol mol(exp -1)) of Asian plumes during INTEX-A is due to a combination of strong photochemical production and mixing with stratospheric air along isentropic surfaces. The GEOS-Chem global chemical transport model captures the timing and location of the Asian plumes remarkably well. However, it significantly underestimates the magnitude of the enhancements

    An Observationally Constrained Evaluation of the Oxidative Capacity in the Tropical Western Pacific Troposphere

    Get PDF
    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of two, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP

    Evaluating the Atmospheric Impact of Wildfires

    No full text
    International audienceThe availability of more and more valuable surface and atmospheric observations, especially from satellites, and the advance of vegetation, general circulation and chemistry-transport modelling, allow quantitative evaluations and prediction of the impact of fires on both air quality and climate. These will represent both the transport of the emissions and the chemical and physical processes involved in the evolution of fire plumes. This chapter provides an overview of the methodology generally adopted for the construction of emission inventories necessary for impact evaluation, and gives a few examples of recent research and the future directions. It discusses the strong influence of meteorological and climatic conditions on the development and strength of fire events. These fires in turn impact meteorological conditions, mainly through the energy released and via their emissions of particulate matter into the atmosphere. These two effects are briefly summarized
    corecore