2,054 research outputs found
Retesting visual fields: Utilizing prior information to decrease test-retest variability in glaucoma
PURPOSE. To determine whether sensitivity estimates from an individual's previous visual field tests can be incorporated into perimetric procedures to improve accuracy and reduce test-retest variability at subsequent visits. METHODS. Computer simulation was used to determine the error, distribution of errors and presentation count for a series of perimetric algorithms. Baseline procedures were Full Threshold and Zippy Estimation by Sequential Testing (ZEST). Retest strategies were (1) allowing ZEST to continue from the previous test without reinitializing the probability density function [pdf], (2) running ZEST with a Gaussian pdf centered about the previous result; (3) retest minimizing uncertainty (REMU), a new procedure combining suprathreshold and ZEST procedures incorporating prior test information. Empiric visual field data of 265 control and 163 patients with glaucoma were input into the simulation. Four error conditions were modeled: patients who make no errors, 15% false-positive (FP) with 3% false-negative (FN) errors, 15% FN with 3% FP errors, and 20% FP with 20% FN errors. RESULTS. If sensitivity was stable from test to retest, an the retest algorithms were faster than the baseline algorithms by, on average, one presentation per location and are significantly more accurate (P < 0.05). When visual fields changed from test to retest, REMU was faster and more accurate than the other retest approaches and the baseline procedures. Relative to the baseline procedures, REMU showed decreased test-retest variability in impaired regions of Visual field. CONCLUSIONS. The obvious approaches to retest, such as continuing the previous procedure or seeding with previous values, have limitations when sensitivity changes between tests. REMU, however, significantly improves both accuracy and precision of testing and displays minimal bias, even when fields change and patients make errors
Trapping of Bose-Einstein condensates in a three-dimensional dark focus generated by conical refraction
We present a novel type of three-dimensional dark focus optical trapping
potential for ultra-cold atoms and Bose-Einstein condensates. This 'optical
bottle' is created with blue-detuned laser light exploiting the phenomenon of
conical refraction occurring in biaxial crystals. We present experiments on
confining a Rb87 Bose-Einstein condensate in this potential and derive the
trapping frequencies and potential barriers under the harmonic approximation
and the conical refraction theory
Conical refraction healing after partially blocking the input beam
In conical refraction, when a focused Gaussian beam passes along one of the
optic axes of a biaxial crystal it is transformed into a pair of concentric
bright rings at the focal plane. We demonstrate both theoretically and
experimentally that this transformation is hardly affected by partially
blocking the Gaussian input beam with an obstacle. We analyze the influence of
the size of the obstruction both on the transverse intensity pattern of the
beam and on its state of polarization, which is shown to be very robust
Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts
The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance
Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts
The structural performance of two advanced composite tow-steered shells with large cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles of the shells vary continuously around their circumference from +/- 10 degrees on the crown and keel, to +/- 45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the tow drop/add capability of the system to achieve a more uniform wall thickness. These unstiffened shells, both without and with small cutouts, were previously tested in axial compression and buckled elastically. In this study, a single unreinforced cutout, scaled to represent a cargo door on a commercial aircraft, is machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of these shells with large cutouts are also computed using linear finite element structural analyses for preliminary comparisons with test data. During testing, large displacements are observed around the large cutouts, but the shells maintain an average of 91 percent of the axial stiffness, and also carry 85 percent of the buckling loads, when compared to the pristine shells without cutouts. These relatively small reductions indicate that there is great potential for using tow steering to mitigate the adverse effects of large cutouts on the overall structural performance
Mothers of Soldiers in Wartime: A National News Narrative
National news media represent mothers of US combat soldiers in the Iraq War as archetypal good mothers, that is, mothers who continue their maternal work even after their children are deployed. However, not all mothers are depicted as the archetypal patriotic mother, i.e., a good mother who is also stoic and silent about the war and her child\u27s role in it. Mothers of soldiers are portrayed as good mothers who sometimes also voice their attitudes about the war effort. The maternal attitudes ranged from complete support for the war to opposition to the war but support for the soldiers. The findings suggest a picture of wartime motherhood that is more nuanced than the historical image of the patriotic mother suggests
Recommended from our members
A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer
Purpose: To evaluate relative diagnostic precision and test–retest variability of 2 devices, the Compass (CMP, CenterVue, Padova, Italy) fundus perimeter and the Humphrey Field Analyzer (HFA, Zeiss, Dublin, CA), in detecting glaucomatous optic neuropathy (GON).
Design: Multicenter, cross-sectional, case-control study.
Participants: We sequentially enrolled 499 patients with glaucoma and 444 normal subjects to analyze relative precision. A separate group of 44 patients with glaucoma and 54 normal subjects was analyzed to assess test–retest variability.
Methods: One eye of recruited subjects was tested with the index tests: HFA (Swedish interactive thresholding algorithm [SITA] standard strategy) and CMP (Zippy Estimation by Sequential Testing [ZEST] strategy), 24-2 grid. The reference test for GON was specialist evaluation of fundus photographs or OCT, independent of the visual field (VF). For both devices, linear regression was used to calculate the sensitivity decrease with age in the normal group to compute pointwise total deviation (TD) values and mean deviation (MD). We derived 5% and 1% pointwise normative limits. The MD and the total number of TD values below 5% (TD 5%) or 1% (TD 1%) limits per field were used as classifiers.
Main Outcome Measures: We used partial receiver operating characteristic (pROC) curves and partial area under the curve (pAUC) to compare the diagnostic precision of the devices. Pointwise mean absolute deviation and Bland–Altman plots for the mean sensitivity (MS) were computed to assess test–retest variability.
Results: Retinal sensitivity was generally lower with CMP, with an average mean difference of 1.85±0.06 decibels (dB) (mean ± standard error, P < 0.001) in healthy subjects and 1.46±0.05 dB (mean ± standard error, P < 0.001) in patients with glaucoma. Both devices showed similar discriminative power. The MD metric had marginally better discrimination with CMP (pAUC difference ± standard error, 0.019±0.009, P = 0.035). The 95% limits of agreement for the MS were reduced by 13% in CMP compared with HFA in participants with glaucoma and by 49% in normal participants. Mean absolute deviation was similar, with no significant differences.
Conclusions: Relative diagnostic precision of the 2 devices is equivalent. Test–retest variability of MS for CMP was better than for HFA
- …
