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Abstract 44 

Purpose: To evaluate relative diagnostic precision and test retest variability of two devices, 45 

the Compass (CMP, CenterVue, Italy) fundus perimeter and the Humphrey Field Analyzer 46 

(HFA, Zeiss, Dublin), in detecting glaucomatous optic neuropathy (GON). 47 

Design: Multicentre cross-sectional case–control study. 48 

Subjects: We sequentially enrolled 499 glaucoma patients and 444 normal subjects to analyse 49 

relative precision. A separate group of 44 glaucoma patients and 54 normal subjects was 50 

analysed to assess test – retest variability.  51 

Methods: One eye of the recruited subjects was tested with the index tests: HFA (SITA 52 

Standard strategy) and CMP (ZEST strategy) with a 24-2 grid. The reference test for GON was 53 

specialist evaluation of fundus photographs or OCT, independent of the visual field. For both 54 

devices, linear regression was used to calculate the sensitivity decrease with age in the 55 

normal group to compute pointwise Total Deviation (TD) values and Mean Deviation (MD). 56 

We derived 5% and 1% pointwise normative limits. MD and the total number of TD values 57 

below 5% (TD 5%) or 1% (TD 1%) limits per field were used as classifiers.  58 

Main Outcome Measures: We used partial Receiver Operating Characteristic (ROC) curves 59 

and partial Area Under the Curve (pAUC) to compare the diagnostic precision of the devices. 60 

Pointwise Mean Absolute Deviation (MAD) and Bland Altman plots for the mean sensitivity 61 

(MS) were computed to assess test- retest variability. 62 

Results: Retinal sensitivity was generally lower with CMP, with an average mean difference of 63 

1.85 ± 0.06 dB (Mean ± Standard Error, p < 0.001) in healthy subjects and 1.46 ± 0.05 dB 64 

(Mean ± Standard Error, p < 0.001) in patients with glaucoma. Both devices showed similar 65 

discriminative power. The MD metric had marginally better discrimination with CMP (pAUC 66 

difference ± Standard Error, 0.019 ± 0.009, p = 0.035). The 95% limits of agreement for the 67 

MS were reduced by 13% in CMP compared to HFA in glaucoma subjects, and by 49% in 68 



normal subjects. MAD was very similar, with no significant differences.  69 

Conclusions: Relative diagnostic precision of the two devices is equivalent. Test-retest 70 

variability of mean sensitivity for CMP was better than for HFA.   71 



Standard Automated Perimetry (SAP) is used to assess the visual field (VF) and is a key 72 

examination for detection, diagnosis and follow up in glaucoma. SAP typically uses stimuli of 73 

varying intensities to assess the differential light sensitivity at static locations across the VF. 74 

The examination demands strong cooperation1 from test subjects; they are required to 75 

maintain central fixation and respond timely and accurately to the presented stimuli. Fixation 76 

instability might be an unavoidable feature of a person’s vision, especially with advanced age 77 

and macular damage2. One proposed solution has been to incorporate live fundus tracking in 78 

the macular perimetric exam to compensate for eye movements in unstable fixation 3.  79 

Recently, a novel instrument, the COMPASS fundus perimeter (CMP, CenterVue, Padua, Italy), 80 

has successfully employed a live fundus tracking technology for wide field (30 degrees) VF 81 

assessment 4, 5 yielding results comparable with the Humphrey Field Analyzer (HFA) in a 82 

preliminary study 4. The CMP captures images of the fundus during the perimetric 83 

examination using a scanning laser ophthalmoscope. This design feature is intended to afford 84 

compensation for eye movements when the stimuli are presented at predetermined test 85 

locations. Moreover, the instrument provides colour images of the fundus and optic nerve that 86 

can be mapped to the final perimetric results potentially providing clinically useful 87 

information about structure and function in one assessment.  88 

Diagnostic accuracy studies are used to certify new examinations before they are brought into 89 

clinical practice. The CMP has not yet been scrutinised in this way and this is the main 90 

purpose of our investigation. Studies investigating relative diagnostic accuracy are at risk of 91 

bias due to shortcomings in design and conduct. For this reason, we designed our study to 92 

follow appropriate guidelines on this specific aim 6, 7.  93 

 Our cross-sectional and multicentre study was designed to evaluate and compare two index 94 

tests, namely the CMP and the HFA. One objective was to evaluate and compare test – retest 95 

variability of the two index tests in healthy subjects and patients with glaucomatous optic 96 



neuropathy (GON). We hypothesised that the CMP could obtain a 20% reduction in test-retest 97 

variability on the measurement of the Mean Sensitivity (MS) of the VF. Another objective was 98 

to build a normative database for the CMP and analyse its relative discriminative ability, 99 

compared to HFA, in detecting subjects with GON. We specifically hypothesised that the two 100 

index tests will have equivalent relative diagnostic precision as assessed by partial area under 101 

the receiver operating characteristic (ROC) curve at >75% specificity, across a spectrum of 102 

disease severity. In both analyses, the reference assessment for GON was specialist evaluation 103 

based on the inspection of fundus photograph or Spectral Domain – Optical Coherence 104 

Tomography (SD-OCT) evaluation of the Retinal Nerve Fibre Layer (RNFL), independent of 105 

the VF. A further objective was to evaluate examination times for the CMP and HFA.   106 



 107 

Methods 108 

Data collection for the normative database and discrimination analysis 109 

People were recruited at eight study sites. These were: ASST - Santi Paolo e Carlo, Milan, Italy; 110 

Azienda Ospedaliero Universitaria Santa Maria della Misericordia di Udine, Udine, Italy; NIHR 111 

Clinical Research Facility at Moorfields Eye Hospital, London, UK; Department of 112 

Ophthalmology and Visual Sciences University of Iowa, 200 Hawkins Drive, Iowa City, IA; 113 

Department of Optometry & Vision Sciences, The University of Melbourne, 114 

Parkville,  Australia; IRCCS Fondazione “G.B. Bietti”, Clinica Oculistica Università degli Studi di 115 

Roma "La Sapienza", Rome, Italy; and Azienda Ospedaliera Sant'Andrea, Rome, Italy). 116 

Recruitment started on 14/09/2015 and concluded on 31/07/2017. Data collection was 117 

planned before the index test and reference standard were performed. The study was 118 

designed to achieve a target number of 1000 glaucoma subjects and 600 healthy subjects for 119 

the normative database and discrimination analysis. However, these targets were not reached 120 

by the termination date of the study. 121 

Participants eligible for inclusion were consecutive adults (18-90 years) with:   122 

• Best corrected visual acuity > 0.8 (if ≤ 50 years old) or >0.6 (if >50 years old) in the 123 

study eye; 124 

• Refraction -10D / +6D; astigmatism ±2D; 125 

• Absence of systemic pathologies that could affect the VF; 126 

• No use of drugs interfering with the correct execution of the perimetric test; 127 

Additional specific inclusion criteria for healthy subjects were: 128 

• Normal optic nerve head in both eyes (no evidence of excavation, rim narrowing or 129 

notching, disc haemorrhages, RNFL thinning); 130 

• Intraocular Pressure (IOP) less than 21 mmHg in both eyes; 131 



• No ocular pathologies, trauma, surgeries (apart from uncomplicated cataract surgery) 132 

in both eyes; 133 

Additional specific inclusion criteria for glaucoma subjects were: 134 

• GON defined as glaucomatous changes to the optic nerve head (ONH) or retinal nerve 135 

fibre layer (RNFL) as determined by a specialist from fundus photograph or SD-OCT, 136 

independently of the VF.  137 

• Patients had to be receiving anti-glaucoma therapy; 138 

• No ocular pathologies, trauma, surgeries (apart from uncomplicated cataract surgery), 139 

other than glaucoma, in both eyes; 140 

Eligible patients were identified based on a clinical diagnosis of GON from the clinical registry 141 

of the glaucoma clinics in the recruiting centres. An expert clinician confirmed the diagnosis of 142 

GON using the imaging data (RNFL SD-OCT or optic nerve photograph) acquired during the 143 

protocol examination (see below). Subjects were recruited consecutively. Since the VF metrics 144 

were not included in the identification of patients with GON, no stratification was planned 145 

according to disease severity. 146 

Eligible healthy participants were identified among staff in the clinics, volunteer registries, 147 

patients’ spouses or partners and patients attending the clinic for reasons other than 148 

glaucoma (for example, for preoperative assessment for cataract in the fellow eye).   149 

If deemed eligible for the study, healthy subjects were recruited consecutively.  150 

Both eyes were examined but only one eye per subject was used in the final analysis, chosen 151 

randomly if both eyes were eligible.  All patients gave their written informed consent to 152 

participate in the study. Ethics Committee approval was obtained (International Ethics 153 

Committee of Milan, Zone A, 22/07/2015, ref: Prot. n° 0019459) and the study was registered 154 

as a clinical trial (ISRCTN13800424). This study adhered to the tenets of the Declaration of 155 

Helsinki. 156 



Each subject had an ophthalmological evaluation following a standard operating procedure 157 

involving assessment of axial length (AL) measurement with the IOL Master (Zeiss) biometer, 158 

SD-OCT of the Optic Nerve Head (ONH) and RNFL, perimetric demonstration (only for 159 

subjects naïve to perimetry); one examination with HFA 24-2 grid SITA Standard to both eyes 160 

and one examination with CMP New Grid (see below), ZEST strategy to both eyes; colour 161 

fundus photo with CMP.  162 

The reference standard to diagnose GON was clinical evaluation by an expert based on RNFL 163 

SD-OCT and/or optic nerve head photography. The rationale for this choice was to avoid any 164 

classification based on VF testing that could have affected the analysis of the relative 165 

discriminative power of the index tests. The two index tests were VF examinations with the 166 

HFA and the CMP. The order of CMP and HFA tests was randomized. The VF examination 167 

performed with the HFA used a 24-2 grid and the SITA – Standard algorithm. Near correction 168 

was used. Fixation was monitored with blind spot tests using the Heijl-Krakau method 8. 169 

The VF examination performed with the CMP employed a testing grid termed ‘New Grid’ 170 

which differs from the HFA 24-2 grid (Supplementary Figure 1, available at 171 

www.aaojournal.org). The New Grid contains all the 52 locations tested with a 24-2, only one 172 

blind spot location (instead of 2 as in the 24-2) and 12 additional points in the macular region 173 

of the VF. The testing strategy was an adaptation of the Zippy Estimation by Sequential 174 

Testing (ZEST) 9, 10. Since the CMP is equipped with autofocusing, no near correction was 175 

needed. Blind spot responses were monitored by projecting stimuli on the location of the 176 

ONH, identified manually by the operator on the baseline infrared fundus image captured at 177 

the beginning of the test. In all the analyses, only the 52 locations in common between the 24-178 

2 and the New Grid were used. 179 

For both devices, VF examinations were considered reliable if the false positive frequency 180 

(FP) was <=18% and the Blind Spot response frequency (BP) was <=25%. If either the HFA or 181 



the CMP VF was deemed unreliable, the eye was excluded from the analysis.  182 

 183 

Statistical analysis 184 

All analyses were based exclusively on the 52 locations in common between the 24-2 grid 185 

(HFA) and the New Grid (CMP). 186 

Differences between the two devices in terms of Mean Sensitivity (MS) and its decrease with 187 

age in healthy subjects were analysed. Since the same eyes were tested with both devices, a 188 

mixed model was used to account for repeated measurements. 189 

Linear regression was used to estimate expected decrease in sensitivity with age in healthy 190 

subjects (dB/years) at each VF location. Total deviation (TD) values for each VF in normal and 191 

glaucoma subjects were calculated as the deviation from the mean trend in the age model for 192 

each location. Mean Deviation (MD) was calculated as the mean of all 24-2 grid TD values in 193 

each VF. Mixed models were used to compare MS and MD values between the two devices in 194 

both the glaucoma and normal groups. MD values were only compared for the glaucoma 195 

group since subjects in the normal group were used to calculate the TD values and are bound 196 

to have a mean MD equal to zero with both devices.  197 

Normative lower limits for each location were calculated for TD values using quantile 198 

regression 11, 12 to account for changes in normal variability with age. Since the variability of 199 

thresholds in healthy subjects is known to increase with age 12, 13, we only allowed for 200 

negative slopes in quantile regression, meaning that normative limits could not shrink with 201 

age. Only the lower 5% and 1% limits for TD values were used in this analysis. 202 

For a fair comparison, TD values and their normative limits were calculated in the same 203 

fashion for HFA and CMP, using the dataset of healthy subjects acquired with each respective 204 

device in this study. 205 



For each VF, we calculated the total number of TD values below the 5% and 1% limits, which 206 

we refer to as TD 5% and TD 1% respectively. 207 

Discrimination ability of the two index tests was measured using MD, TD 5% and TD 1% as 208 

classifiers. These classifiers were used to build Receiver Operating Characteristics (ROC) 209 

curves.  Instead of comparing the whole ROC curve, we analysed the Partial ROC curve (pROC) 210 

down to a minimum specificity of 0.75 to avoid comparing the two devices at too low 211 

specificity values that would fall far outside a clinically useful range. The 95% confidence 212 

intervals for Partial Areas Under the Curves (pAUCs) and p–values for differences were 213 

calculated via bootstrapping14.  214 

The normative data, used to calculate MD and TD metrics and their normative limits, was 215 

composed of the same set of healthy subjects used in the discrimination analysis to calculate 216 

pROC curves and their pAUCs. Therefore, they are only used here to compare the relative 217 

performance of the two devices and not to estimate or report their actual discriminative 218 

power. 219 

To compare test times, CMP average time per location was calculated for each test and the 220 

result multiplied by the number of total points in a 24-2 grid (54 points). This made it 221 

comparable with the testing time read from the printout of the HFA. 222 

 223 

Data collection for test - retest variability 224 

A separate group of glaucoma and healthy subjects was recruited to assess test – retest 225 

variability with the two devices. The target number was 56 subjects with GON and 56 healthy 226 

subjects. The sample size calculation for this part of the study was based on previously 227 

reported data for test - retest in healthy subjects and glaucoma patients 15, 16. All subjects 228 

underwent the same examinations reported for the previous section and the diagnosis of GON 229 

was again confirmed by expert evaluation of the RNFL on SD – OCT images or photographs of 230 



the optic nerve head. Subjects were sequentially recruited in the same way described for the 231 

previous part of the study. No stratification by disease (VF) severity was planned in the 232 

recruitment of glaucoma subjects. All subjects performed four VF tests: two with CMP with a 233 

24-2 grid, ZEST strategy, and two with HFA with a 24-2 grid, SITA Standard strategy, in 234 

randomized order. All examinations were done within a time span of seven days. 235 

  236 

Statistical analysis 237 

Test – retest variability for the overall VF was assessed for MS using Bland – Altman plots and 238 

95% limits of agreement.  Any change in test-retest variability was evaluated by percentage 239 

reduction of the 95% interval of agreement of CMP over HFA. The 95% confidence intervals 240 

for the percentage variation were estimated using a paired bootstrap procedure with 50000 241 

resamples. Mean Absolute Deviation (MAD) was used to assess pointwise test - retest 242 

variability. Differences in MAD, point-wise sensitivity and MS were tested using t-test 243 

statistics from linear mixed models with random effects to account for correlations between 244 

VF measurements from the same subject. 245 

All analyses were done using R version 3.3.1 (R Foundation for Statistical Computing, Vienna, 246 

Austria). 247 

 248 

  249 



Results 250 

Normative database 251 

For this part of the study, 1249 people were screened for eligibility and invited to participate 252 

between 14/09/2015 and 31/07/2017. Of these, 177 subjects did not satisfy the inclusion 253 

criteria and 59 did not complete the examination protocol. Finally, 70 subjects were excluded 254 

because they had at least one unreliable VF test (48 with HFA, 20 with CMP and 2 with both 255 

devices).  256 

Therefore, 444 healthy subjects and 499 glaucoma subjects (patients with GON) were 257 

included in the final analysis. Although no stratification by disease severity was planned, a 258 

wide spectrum of VF severity was obtained by the end of the recruitment. Glaucoma Staging 259 

System 2 (GSS2)17 stage distribution for glaucoma participants is reported in Table 1 and 260 

depicted in Figure 1. 261 

Subjects’ age distributions are reported in Table 1. Mean age (± standard deviation [SD]) was 262 

48 ± 16 and 68 ± 11 years for the normal and glaucoma group respectively. 263 

Average MS was lower with CMP compared to HFA in healthy subjects (Mean ± SD, 27.6 ± 1.6 264 

dB vs 29.4 ± 2.0 dB) and glaucoma subjects (20.5 ± 6.7 dB vs 21.9 ± 6.9 dB) and these 265 

differences were both statistically significant (p < 0.001).  Comparison of the MD values in 266 

healthy subjects has not been performed since this group was used to calculate the normative 267 

average and therefore they were bound to have zero means for both devices. The MD values 268 

from the two devices showed good agreement (Figure 2). Indeed, the average MD (± SD) for 269 

glaucoma subjects was -6.55 ± 6.60 dB (Median: -4.37 dB, IQR: 8.92 dB) with CMP and -6.50 ± 270 

6.63 dB (Median: -4.73 dB, IQR: 9.19 dB) with HFA and this difference was not statistically 271 

significant (p = 0.54).  272 



Average number of presentations (± SD) per location in CMP was 3.02 ± 0.55 for healthy 273 

subjects and 3.70 ± 1.09 for glaucoma patients. Corrected test duration for CMP and test 274 

duration for HFA were similar in both the healthy and glaucoma subjects (see Table 2). 275 

Point-wise sensitivity was generally lower for CMP compared to HFA (Figure 3). The average 276 

mean difference was 1.85 ± 0.06 dB (Mean ± Standard Error, p < 0.001) in healthy subjects 277 

and 1.46 ± 0.05 dB (Mean ± Standard Error, p < 0.001) in patients with glaucoma. Similarly to 278 

the MD, such a difference was reduced when total deviations were considered in glaucoma 279 

subjects (Figure 4), with 7 locations exceeding 1 dB difference.  280 

The MS in the healthy group decreased with age in a similar fashion for both devices, with a 281 

small but statistically significant difference (-0.051 ± 0.005 dB/year for HFA and -0.027 ± 282 

0.005 dB/year for CMP; Mean ± Standard Error; p < 0.001 for slope difference). 283 

The rate of false positives was 1.6 ± 4.0 % for CMP and 1.6 ± 2.3 % for HFA (Mean ± SD). 284 

 285 

Discrimination analysis 286 

Relative discriminative power (relative diagnostic precision) was marginally greater for CMP 287 

when compared to HFA using the MD metric (pAUC difference ± Standard Error, 0.019 ± 288 

0.009, p = 0.035, see Figure 5). There was no statistically significant difference in pAUC 289 

between CMP and HFA when using TD 5% (p =0.18) or TD 1% (p=0.22) as the classifier. 290 

Sensitivity values at selected specificities are reported in Table 3. 291 

 292 

Test – retest variability 293 

By the end of the study, 99 subjects were screened; one subject did not complete all the 294 

examinations and was excluded. In total 54 healthy subjects and 44 glaucoma patients, were 295 

recruited for the test – retest study. Bland – Altman plots are reported in Figure 6. The mean 296 

difference in MS between the first and the second test with the CMP was statistically different 297 



from zero in glaucoma subjects (Mean ± Standard Error, 0.44 ± 0.21 dB, p = 0.041). Bootstrap 298 

distributions of the percentage improvement for the glaucoma group are reported in 299 

Supplementary Figure 2 (available at www.aaojournal.org).  300 

The 95% limits of agreement for MS are depicted in Figure 6. They were 49% (95% CIs: 17% 301 

to 67%) narrower for CMP (Limits of agreement: -1.31, 1.63 dB) compared to HFA (Limits of 302 

agreement: -2.84, 2.91 dB) in the healthy subjects. The 95% limits of agreement were 13% 303 

narrower for CMP (Limits of agreement: -2.26, 3.14 dB) compared to HFA (Limits of 304 

agreement: -3.11, 3.11 dB) in the glaucoma patients but the confidence intervals for these 305 

estimates were very large (95% CI: - 28% to 42%). In glaucoma subjects, the mean test - 306 

retest difference (± SD) was 0.44 ± 1.38 dB for CMP and 0 ± 1.59 dB for HFA. Bland – Altman 307 

plots for all sensitivities are reported in Figure 7. The 95% limits of agreement were generally 308 

narrower for CMP for sensitivities above or equal to 15 dB (Mean Difference: 1.80 dB, 309 

between 15 and 30 dB) and larger below 15 dB (Mean Difference: 5.46 dB).  310 

Pointwise test – retest variability, calculated using the MAD was not significantly different 311 

between CMP and HFA for glaucoma patients (Mean ± SD, CMP: 1.03 ± 1.01 dB, HFA: 1.07 ± 312 

1.16 dB; Mean Difference ± SE, 0.03 ± 0.2 dB, p = 0.88) and for healthy subjects (Mean ± SD, 313 

CMP: 0.59 ± 0.48 dB, HFA: 0.90 ± 1.15 dB; 0.08 ± 0.16 dB, p = 0.62).  314 

  315 



Discussion 316 

This study was designed to compare two index tests, CMP and HFA, in terms of test - retest 317 

variability and relative discriminative power. We recruited a large cohort of 943 subjects (499 318 

patients with glaucoma and 444 healthy subjects) for the discrimination analysis and 98 319 

subjects (44 glaucomatous and 54 healthy) to compare test-retest variability. The reference 320 

standard used for the diagnosis of GON was independent of VF assessment, based on 321 

specialist assessment of ONH colour photography and/or peripapillary RNFL thickness 322 

measured with SD-OCT.  323 

The primary objective was to show a reduction of test – retest variability in the MS of at least 324 

20%. Such a reduction was achieved in healthy subjects (49%), but not in glaucoma subjects, 325 

where the reduction was of 13%. Several factors might have contributed to this result, such as 326 

a more pronounced perimetric learning effect with CMP18-21.  The mean difference in MS in 327 

CMP between the first and the second test was small but statistically significant and this may 328 

be indicative of a learning effect in the glaucoma test - retest cohort. This effect was not seen 329 

in the HFA data. Indeed, despite all glaucoma subjects in our sample having had previous 330 

experience with SAP, the new setup of a fundus perimeter might have created an unfamiliar 331 

testing condition for test takers. In fact, most of them were recruited from glaucoma clinics 332 

and were experienced with HFA. The different threshold acquisition strategies employed by 333 

the two devices may also explain this difference. SITA strategies incorporate spatial 334 

information between neighbouring test locations. Such an approach allows for faster 335 

threshold estimation, but it has been shown to bias the estimates introducing correlations 336 

between neighbouring points 22, 23. On the other hand, the implementation of the ZEST 337 

strategy used in CMP tests each point independently.  Moreover, test - retest variability is 338 

known to increase dramatically at lower sensitivities24-27 and this effect may simply consume 339 

any improvements from adjusting for fixation stability afforded by the tracking in fundus 340 



perimetry. We speculate this is the reason we see much bigger improvement in test-retest 341 

variability in the healthy subjects compared to the patients in this study. This is supported by 342 

the results shown in the Bland-Altman plots for pointwise sensitivities, where it can be 343 

observed that the CMP offers no advantage in test-retest variability compared to HFA at 344 

values below 15 dB. Indeed, the 95% limits of agreement between 11 and 14 dB were larger 345 

for CMP than for HFA. The difference here might be explained by the spatial smoothing and 346 

the use of growth pattern to seed the priors 9, 22 in the SITA strategy, which might play a large 347 

role in reducing the test retest variability in this sensitivity range. However, the clinical utility 348 

of thresholds below 15 dB has been questioned. Indeed, recent evidence suggests that 349 

increasing perimetric contrast all the way to 0 dB may not be clinically useful and sensitivities 350 

obtained at severely damaged visual field locations (<15-19 dB) are unreliable and highly 351 

variable. It could be argued that improvements in tests-retest variability in the upper range of 352 

sensitivity values could be more clinically relevant for progression detection 24-29. However, 353 

this is speculation because only analysis of long-term follow-up of glaucoma subjects with the 354 

CMP will allow the assessment of the real effect of such reduction in variability on earlier 355 

diagnosis of progression.  356 

Additionally, Wyatt et al identified gaze instability as a possible source of variability at the 357 

edges of scotomata30, and tracking might help reduce this effect. However, their analysis was 358 

performed with a 10-2 grid, which has a much finer spacing between locations (2 degrees). 359 

Hence, further investigation is needed to assess the effect of gaze instability in the estimation 360 

of edges on a typical testing grid, such as 24-2 or 30-2.  361 

One limitation of our analysis is that the sample size of the glaucoma test – retest group was 362 

probably too small to reliably assess any differences, as shown by the large confidence 363 

intervals calculated via bootstrapping (Supplementary Figure 2, available at 364 

www.aaojournal.org). Post hoc power calculations based on bootstrap resampling estimated 365 



that 97 glaucoma subjects would have been needed to detect a 20% improvement at a 366 

significance level of 0.05 with 80% power. This is considerably above the initial estimates 367 

obtained from literature data 15, 16 used for designing of the study. Therefore, an additional 368 

investigation with longer test series on a larger sample might be needed to fully assess the 369 

effect of fundus tracking on test – retest variability. 370 

Relative discriminative power for the two index tests (devices) was similar. When compared, 371 

pROC curves calculated using the number of abnormal points per field in the TD maps largely 372 

overlapped, with no evidence for any superiority of either index test (Figure 5). Statistically 373 

significant differences in pROC curves were observed when MD was used as a classifier but 374 

such differences are too small to be likely relevant in clinical situations. These results are 375 

compatible with the fact that, although the actual sensitivity estimates were lower for CMP 376 

compared to HFA, relative indices, such as the MD and TD values, showed only small 377 

differences in glaucoma subjects between the two devices, yielding similar diagnostic ability. 378 

Our results are based on a large sample of individuals from different centres. The different age 379 

clusters, except for people older than 80 years of age, were well represented (Table 1). This 380 

was sufficient to reliably conduct an analysis on relative discriminative power. It is important 381 

to note that, for both devices, all indices used in the discrimination analysis (MD, TD 5% and 382 

TD 1%) and the normative limits for TD were recalculated in the same fashion from the raw 383 

sensitivities and are therefore comparable. However, since the normative limits have been 384 

derived from the same group of healthy subjects used in the discrimination analysis, the 385 

pAUCs are biased and can only be used to compare the relative discriminative ability of the 386 

two devices; they cannot be generalised to estimate the effective discriminative power of 387 

either the CMP or the HFA in clinical practice.  388 

Examination times for the two devices were similar.  Both devices took, on average, 5 to 6 389 

minutes to complete. Testing times had to be corrected prior to comparison due to the greater 390 



number of tested locations with the New Grid used with CMP (65 locations) compared to the 391 

HFA 24-2 grid (54 locations). After corrections, no statistically significant differences could be 392 

detected between the two devices in healthy subjects. A statistical difference was observed in 393 

glaucoma subjects but it is clinically irrelevant (approximately an 11 second difference on 394 

average). Despite similarities in overall examination times, fewer presentations were needed 395 

to estimate thresholds in CMP when compared to HFA at the 52 matching locations. The 396 

number of presentations in healthy subjects was 157 ± 28, which is lower than that reported 397 

for SITA-Standard in the literature (276 for 52 locations) 13. Unfortunately, interpretation of 398 

the examination times of the two devices is difficult for a variety of reasons. For example, CMP 399 

uses catch trials whereas HFA SITA algorithms use response times to estimate false positive 400 

error rates 31. Moreover, the CMP does not project stimuli when the quality in the tracking 401 

signal is low, and this may increase overall examination time. 402 

One limitation of our study is that the glaucoma subjects were not stratified according to 403 

disease severity, since VF data were not used in the diagnosis of GON. This could have 404 

resulted in an uneven representation of glaucoma stages. However, the range of visual field 405 

damage was sufficiently large to allow for a reliable evaluation across the whole spectrum of 406 

glaucoma damage (see Table 1 and Figure 1).  407 

Our recruitment of healthy subjects was not population based and this is another potential 408 

limitation of our study. The main design bias potentially recruiting ‘super-normals’ in studies 409 

of diagnostic precision is to recruit the healthy control group using restriction criteria related 410 

to the outcome of interest 32, for example requiring the healthy controls to have normal visual 411 

fields. We explicitly avoided this bias. Nevertheless, volunteers to clinical studies may be 412 

healthier than an unselected population. This is very hard to avoid, because participants need 413 

to volunteer. However, when we analysed the MD values from the HFA printouts of the 444 414 

healthy subjects, whose calculation is based on the independent internal normative database 415 



built in the device, we found that our sample did not show important deviations from the 416 

normative values. Indeed, the average MD was -1.12 ± 1.64 dB (Median: -0.91 dB, IQR: 1.97 417 

dB). 418 

Finally, the design of this study only allowed for a relative comparison of discriminative 419 

power. Evaluation of the actual diagnostic accuracy would need a further validation on an 420 

independent dataset, to assess how much these findings can be extracted on the general 421 

population. Furthermore, such an evaluation should be conducted on a set of subjects before 422 

the reference test (the clinical diagnosis of GON) is performed, as case-control scenarios are 423 

known to produce biased estimates in discrimination analyses. One option might be to test 424 

glaucoma suspects with the CMP before they are diagnosed as healthy or as having glaucoma. 425 

 426 
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 506 

Figure Legends 507 

Figure 1. GSS217 plot showing the distribution of the 499 subjects with glaucomatous optic 508 

neuropathy in the different stages of the classification. The light grey lines indicate the 509 

boundaries for the different stages. Subjects are classified based on their MD and PSD values 510 



directly taken from the HFA printout. The distribution is approximately uniform across the 511 

different stages.  512 

 513 

Figure 2. The two panels show the agreement of MD (on the left) and MS (on the right) values 514 

between CMP (vertical axis) and HFA (horizontal axis). The black solid line indicates the ideal 515 

perfect agreement. The red dots represent the healthy subjects while the green dots indicate 516 

glaucoma subjects. Differently from MS, MD values did not show important differences 517 

between the two devices. 518 

 519 

Figure 3. Average sensitivity (dB) for each of the 52 locations considered in this analysis for 520 

CMP (A) and HFA (B). The bottom panels report the average pairwise difference per location 521 

in the healthy subjects (C) and for glaucoma patients (D). 522 

 523 

Figure 4. Average total deviation value (dB) for each of the 52 locations considered in this 524 

analysis for CMP (A) and HFA (B). Panel C reports the average pairwise difference (CMP – 525 

HFA) in Total Deviation per location in the glaucoma subjects (in bold all differences 526 

exceeding 1 dB). 527 

 528 

Figure 5. Partial ROC curves built using the MD (in the leftmost panel) as a classifier. The 529 

middle and rightmost panels depict partial ROC curves built using the number of abnormal 530 

locations at two different cut-offs, 5% and 1%, on the probability maps for TD values. There 531 

was no significant difference in either the TD 5% or the TD 1%. MD = Mean Deviation; TD = 532 

Total Deviation. 533 

 534 



Figure 6. Bland – Altman plots for MS. Red dots represent MS measurements from the HFA, 535 

blue dots from the CMP. The shaded grey area indicates the 95 % limits of agreement on the 536 

test-retest difference. The black solid line indicates the mean difference between test-retest 537 

MS measurements. A small offset in the mean difference can be detected in the glaucoma 538 

group with the CMP (bottom – left panel). 539 

 540 

Figure 7. Bland – Altman plots for all sensitivities. Red dots represent MS measurements from 541 

the HFA, blue dots from the CMP. The shaded grey area indicates the 95 % limits of agreement 542 

on the test-retest difference. 95% Limits of agreement were narrower for sensitivities above 543 

or equal to 15 dB, larger between 11 dB and 14 dB and equivalent below 10 dB. The larger 544 

range in the differences was at 14 dB (-27 dB, 27 dB) for CMP and at 12 dB (-24 dB, 25 dB) for 545 

HFA. 546 


