3,289 research outputs found
Arkhipov's theorem, graph minors, and linear system nonlocal games
The perfect quantum strategies of a linear system game correspond to certain
representations of its solution group. We study the solution groups of graph
incidence games, which are linear system games in which the underlying linear
system is the incidence system of a (non-properly) two-coloured graph. While it
is undecidable to determine whether a general linear system game has a perfect
quantum strategy, for graph incidence games this problem is solved by
Arkhipov's theorem, which states that the graph incidence game of a connected
graph has a perfect quantum strategy if and only if it either has a perfect
classical strategy, or the graph is nonplanar. Arkhipov's criterion can be
rephrased as a forbidden minor condition on connected two-coloured graphs. We
extend Arkhipov's theorem by showing that, for graph incidence games of
connected two-coloured graphs, every quotient closed property of the solution
group has a forbidden minor characterization. We rederive Arkhipov's theorem
from the group theoretic point of view, and then find the forbidden minors for
two new properties: finiteness and abelianness. Our methods are entirely
combinatorial, and finding the forbidden minors for other quotient closed
properties seems to be an interesting combinatorial problem.Comment: Minor updates. Also see video abstract at
https://youtu.be/uTudADhT1p
In memory of David Mendel Burstein
Article originally published in VetNews / VetNuus, May 2023, the monthly magazine of the South African Veterinary AssociationDavid Mendel Burstein was born on 6 February 1943 in
Johannesburg. He attended Houghton Primary School and King
Edward (K.E.S) High School for Boys in Johannesburg. Initially,
Dave began studying for a degree in Chemical Engineering at the
University of the Witwatersrand which he gave up in his second
year to study Veterinary Science at Onderstepoort, Pretoria
University. Dave graduated as a veterinarian in 1967ab202
Becoming a pianist: an fMRI study of musical literacy acquisition
Musically naive divisions were scanned using functional magnetic resonance imaging (fMRI) before and after they had been taught to read music and play keyboard. When divisions played melodies from musical notation after training, activation was seen in a cluster of voxels within the right superior parietal cortex consistent with the view that music reading involves spatial sensorimotor mapping
Cepheid distances from the SpectroPhoto-Interferometry of Pulsating Stars (SPIPS) - Application to the prototypes delta Cep and eta Aql
The parallax of pulsation, and its implementations such as the
Baade-Wesselink method and the infrared surface bright- ness technique, is an
elegant method to determine distances of pulsating stars in a quasi-geometrical
way. However, these classical implementations in general only use a subset of
the available observational data. Freedman & Madore (2010) suggested a more
physical approach in the implementation of the parallax of pulsation in order
to treat all available data. We present a global and model-based
parallax-of-pulsation method that enables including any type of observational
data in a consistent model fit, the SpectroPhoto-Interferometric modeling of
Pulsating Stars (SPIPS). We implemented a simple model consisting of a
pulsating sphere with a varying effective temperature and a combina- tion of
atmospheric model grids to globally fit radial velocities, spectroscopic data,
and interferometric angular diameters. We also parametrized (and adjusted) the
reddening and the contribution of the circumstellar envelopes in the
near-infrared photometric and interferometric measurements. We show the
successful application of the method to two stars: delta Cep and eta Aql. The
agreement of all data fitted by a single model confirms the validity of the
method. Derived parameters are compatible with publish values, but with a
higher level of confidence. The SPIPS algorithm combines all the available
observables (radial velocimetry, interferometry, and photometry) to estimate
the physical parameters of the star (ratio distance/ p-factor, Teff, presence
of infrared excess, color excess, etc). The statistical precision is improved
(compared to other methods) thanks to the large number of data taken into
account, the accuracy is improved by using consistent physical modeling and the
reliability of the derived parameters is strengthened thanks to the redundancy
in the data.Comment: 10 pages, 4 figures, A&A in pres
Perceived impacts and residents\u27 support for tourism development in Port Dickson, Malaysia
This study evaluates the image that residents perceive of their location and its influences on their understanding of tourism impacts, and their support for the development of the tourism. The data was collected from 422 residents of Port Dickson in Malaysia and were examined by applying PLS-SEM. Results displayed a positive image of place will lead to positive perceptions of tourism development impacts leadings to residents\u27 support for tourism development. Practical implications of these outcomes are also discussed relative to tourism planning and development
Methods in Plant Foliar Volatile Organic Compounds Research
Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies
Methane emissions from tree stems in neotropical peatlands
1.Neotropical peatlands emit large amounts of methane (CH4) from the soil surface, but fluxes from tree stems in these ecosystems are unknown. In this study we investigated CH4 emissions from five tree species in two forest types common to neotropical lowland peatlands in Panama.2.Methane from tree stems accounted for up to 30% of net ecosystem CH4 emissions. Peak CH4 fluxes were greater during the wet season when the water table was high and temperatures were lower. Emissions were greatest from the hardwood tree Campnosperma panamensis, but most species acted as emitters, with emissions declining exponentially with height along the stem for all species. 3.Overall, species identity, stem diameter, water level, soil temperature and soil CH4 fluxes explained 54% of the variance in stem CH4 emissions from individual trees. On the landscape level, the high high emission from Campnosperma panamensis forest these emitted comparable amounts of CH4 from tree stems as mixed forests at 340 kg CH4 day‐1 during flooded periods despite their substantially lower areal cover. 4.We conclude that emission from tree stems is an important emission pathway for CH4 flux from Neotropical peatlands, and that these emissions vary strongly with season and forest type
Parathyroid Hormone Enhances Mechanically Induced Bone Formation, Possibly Involving L-Type Voltage- Sensitive Calcium Channels
PTH and mechanical loading might act synergistically on bone formation. We tested the in vivo effect of the L-type voltage-sensitive calcium channel (VSCC) blocker, verapamil, on bone formation induced by human PTH-(1–34) (PTH) injection with or without mechanical loading. Adult rats were divided into eight groups: vehicle, verapamil, PTH, or verapamil plus PTH with or without mechanical loading. Verapamil (100 mg/kg) was given orally 90 min before loading. PTH (80 μg/kg) was injected sc 30 min before loading. Loading applied to tibia and ulna for 3 min significantly increased the bone formation rate on both the endocortical surface of tibia and the periosteal surface of ulna (P < 0.0001). Treatment with PTH enhanced load-induced bone formation by 53% and 76% (P < 0.001) on the endocortical and periosteal surfaces, respectively. Treatment with verapamil suppressed load-induced bone formation rate by 77% and 59% (P < 0.01). Furthermore, verapamil suppressed bone formation in rats subjected to PTH plus loading by 74% and 68% (P < 0.0001) at the tibia and ulna, respectively. In the groups without loading, neither verapamil nor PTH treatment significantly changed any bone formation parameter. This study indicates that L-type VSCCs mediate load-induced bone formation in vivo. Furthermore, PTH enhances load-induced bone adaptation through involvement of L-type VSCCs
Extended envelopes around Galactic Cepheids III. Y Oph and alpha Per from near-infrared interferometry with CHARA/FLUOR
Unbiased angular diameter measurements are required for accurate distances to
Cepheids using the interferometric Baade Wesselink method (IBWM). The precision
of this technique is currently limited by interferometric measurements at the
1.5% level. At this level, the center-to-limb darkening (CLD) and the presence
of circumstellar envelopes (CSE) seem to be the two main sources of bias. The
observations we performed aim at improving our knowledge of the interferometric
visibility profile of Cepheids. In particular, we assess the systematic
presence of CSE around Cepheids in order determine accurate distances with the
IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for
which the pulsation is well resolved and a non-pulsating yellow supergiant
(alpha Per) using long-baseline near-infrared interferometry. We interpreted
these data using a simple CSE model we previously developed. We found that our
observations of alpha Per do not provide evidence for a CSE. The measured CLD
is explained by an hydrostatic photospheric model. Our observations of Y Oph,
when compared to smaller baseline measurements, suggest that it is surrounded
by a CSE with similar characteristics to CSE found previously around other
Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc.
Additional evidence points toward the conclusion that most Cepheids are
surrounded by faint CSE, detected by near infrared interferometry: after
observing four Cepheids, all show evidence for a CSE. Our CSE non-detection
around a non-pulsating supergiant in the instability strip, alpha Per, provides
confidence in the detection technique and suggests a pulsation driven mass-loss
mechanism for the Cepheids.Comment: accepted for publication in Ap
- …