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PTH and mechanical loading might act synergistically on
bone formation. We tested the in vivo effect of the L-type volt-
age-sensitive calcium channel (VSCC) blocker, verapamil, on
bone formation induced by human PTH-(1–34) (PTH) injection
with or without mechanical loading. Adult rats were divided
into eight groups: vehicle, verapamil, PTH, or verapamil plus
PTH with or without mechanical loading. Verapamil (100 mg/
kg) was given orally 90 min before loading. PTH (80 �g/kg) was
injected sc 30 min before loading. Loading applied to tibia and
ulna for 3 min significantly increased the bone formation rate
on both the endocortical surface of tibia and the periosteal
surface of ulna (P < 0.0001). Treatment with PTH enhanced

load-induced bone formation by 53% and 76% (P < 0.001) on the
endocortical and periosteal surfaces, respectively. Treatment
with verapamil suppressed load-induced bone formation rate
by 77% and 59% (P < 0.01). Furthermore, verapamil sup-
pressed bone formation in rats subjected to PTH plus loading
by 74% and 68% (P < 0.0001) at the tibia and ulna, respectively.
In the groups without loading, neither verapamil nor PTH
treatment significantly changed any bone formation param-
eter. This study indicates that L-type VSCCs mediate load-
induced bone formation in vivo. Furthermore, PTH enhances
load-induced bone adaptation through involvement of L-type
VSCCs. (Endocrinology 144: 1226–1233, 2003)

INTERMITTENT administration of the human (h) PTH
fragment, hPTH-(1–34) (PTH), stimulates bone forma-

tion (1–4). Mechanical loading in combination with PTH
treatment has synergistic action on bone formation in rats
(5–7). PTH and mechanical loading produce similar re-
sponses in osteoblasts, suggesting that one way PTH elicits
an anabolic response in bone is by enhancing responsiveness
to mechanical loading. An early response to both stimuli is
a rapid increase in intracellular calcium ([Ca2�]i) that is de-
pendent on both extracellular Ca2� entry and [Ca2�]i release
(8–10). The early increase in [Ca2�]i has been linked to in-
creased production of nitric oxide and prostaglandins in
osteoblasts (11, 12) and up-regulation of some skeletal
growth factors, including IGF-I and TGF� (13, 14). Both nitric
oxide and prostaglandins have been shown to mediate load-
induced bone formation in vivo (15–17).

Recent cell culture studies show that PTH enhances the
intracellular calcium concentration in osteoblastic cells sub-
jected to fluid shear stress, and that the synergistic effect
between PTH and fluid shear is attenuated by L-type calcium
channel blockers, such as nifedipine (18, 19). These data
suggest that PTH enhances fluid shear-induced calcium sig-
naling in osteoblastic cells through activation of L-type volt-
age-sensitive calcium channels (VSCCs). We hypothesized
that PTH affects load-induced bone formation in vivo via
L-type VSCCs.

We have previously shown that two L-type calcium chan-

nel blockers, nifedipine and verapamil, suppress load-
induced bone formation in rats (20), suggesting that L-type
VSCCs play a critical role in mechanically induced bone
formation in vivo. In the present study we tested the in vivo
effect of the L-type VSCC blocker, verapamil, on bone for-
mation after PTH injection and/or mechanical loading.

Materials and Methods
Experimental animals

A total of 64 adult female Sprague Dawley rats were used for this
study. The rats were housed one per cage at the Laboratory Animal
Resource Center of Indiana University School of Medicine and were fed
standard rat chow and water ad libitum. The animals were allowed to
acclimate for 2 wk before the experiment began and were approximately
7 months old at the beginning of the study. All procedures performed
in this study were in accordance with the Indiana University animal care
and use committee guidelines.

Experimental design

The rats were randomly divided into eight groups (n � 8/group): 1)
vehicle treated; 2) verapamil treated; 3) PTH treated; 4) verapamil plus
PTH treated; 5) vehicle plus mechanical loading; 6) verapamil plus
loading; 7) PTH plus loading; and 8) verapamil, PTH, and loading (Fig.
1). For the groups without loading, one group was given vehicle treat-
ment only. The other three groups were given verapamil orally (100
mg/kg; Sigma-Aldrich, St. Louis, MO) and/or hPTH-(1–34) sc (80 �g/
kg; Bachem California, Inc., Torrance, CA) or both verapamil and PTH.
The same treatments were given to the remaining four groups with
loading. Verapamil and hPTH-(1–34) were given 90 and 30–40 min
before loading, respectively. The doses and dosing regimens were se-
lected based on the previous studies (5, 20).

Verapamil was dissolved in polyethylene glycol 400 (Sigma-Aldrich)
to form a 10-mg/ml solution (21), stirred overnight, wrapped in alu-
minum foil to protect the solution from light, and stored at room tem-
perature. The vehicle consisted of polyethylene glycol 400. The drug was

Abbreviations: BFR/BS, Bone formation rate/bone surface; [Ca2�]i,
intracellular calcium; h, human; MAR, mineral apposition rate; MS/BS,
mineralizing surface/bone surface; PLSD, protected least significant
difference; r, relative; VSCC, voltage-sensitive calcium channel.
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administered to the rats by gavage. Oral administration of verapamil
causes a peak plasma level 90 min later, coincident with loading (22). The
hormone vehicle for hPTH-(1–34) was acidified saline containing 2%
heat-inactivated rat sera (1). A single sc injection of hPTH-(1–34) leads
to peak serum concentration at 30–60 min after administration in rats,
also coincident with loading (5, 23). Normal PTH levels are restored
within 4 h, and a single sc injection of PTH has no significant effect on
plasma calcium levels (22). Rats from the loaded groups were subjected
to four-point bending of the right tibia and axial loading of the right ulna.

Loading protocol

A single bout of mechanical loading was applied as a haversine wave
with a frequency of 2 Hz and a duration of 3 min (360 cycles) to both
right ulna and right tibia. For tibial bending, force was applied through

a four-point bending apparatus (Fig. 2A) using a load-controlled, elec-
tromagnetic loading device (24). The peak load on the tibia was 63 N.
The peak compressive strains at the tibiae midshaft were approximately
3000 �� on the lateral periosteal surface and 1700 �� on the lateral
endocortical surface (25). For axial loading on the ulna, force was applied
across the flexed carpus and olecanon as described by Torrance et al. (26)
(Fig. 2B) using a stepper motor-driven spring linkage. The peak load on
the ulna was 16.5 N, resulting in a peak compressive strain of 3600 ��
on the medial surface of the ulnar midshaft (27). We chose loading
protocols that would induce a similar level of new bone formation in the
tibia (endocortical surface) and ulna (periosteal surface).

Before the loading session, rats were anesthetized with an ip injection
of a mixed solution of ketamine hydrochloride (50 mg/kg; Fort Dodge
Animal Health, Fort Dodge, IA) and xylazine (10 mg/kg; The Butler Co.,

FIG. 2. A, Diagram of the rat tibia four-point bending system. The right tibia is fixed between two upper load points (11 mm apart) and two
supports (23 mm apart). When force is applied, a mediolateral bending moment is produced in the central portion of the tibial shaft. This figure
is reprinted from the report by Robling et al. (54) with permission from the publisher. B, Schematic diagram of the rat ulna loading model. The
right forearm is held between upper and lower cups. The force (upper large arrows) is applied through the carpal joint and overlying soft tissues.
Axial load is translated into a bending moment (small arrow) in the ulnar diaphysis due to preexisting mediolateral curvature. This figure is
reprinted from the report by Robling et al. (55) with permission from the publisher.

FIG. 1. Overview of the experimental design. Rats were equally divided into eight groups. Half of the animals were treated with vehicle,
verapamil, PTH, or verapamil plus PTH without loading, The other half received the various drug treatments and mechanical loading of the
ulna and tibia. Verapamil was given 90 min before, and PTH was given 30 min before loading. All animals were labeled with injection of calcein
on d 5 and 9, and were killed on d 12.
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Columbus, OH). After loading bouts, rats were allowed normal cage
activity.

Bone labeling, processing, and histomorphometry

All rats were given an ip injection of a fluorochrome bone label (7
mg/kg calcein; Sigma-Aldrich) on d 4 and 9 after loading and were killed
3 d after the second label. The calcein label was administered 4 d after
loading because previous experiments have shown that bone formation
is initiated 96 h after mechanical loading (28). The right and left tibiae
and ulnae were removed, cleaned of soft tissue, and cleaved at the distal
and proximal ends to allow proper infiltration of plastic into the marrow
cavity. Specimens were immersed in 10% neutral buffered formalin for
48 h to fix the tissues. The specimens were then dehydrated in graded
alcohols, cleared in xylene, and embedded in methyl methacrylate. Us-
ing a diamond-embedded wire saw (Histo-saw, Delaware Diamond
Knives, Wilmington, DE), three transverse thick sections (�70 �m) were
cut from the tibial diaphyses 4–8 mm proximal to the tibia-fibula junc-
tion (this region is under maximal bending during four-point loading)
and from ulna diaphysis 2–3 mm distal to the ulnar midpoint, which has
been shown to be most responsive to loading (29), and mounted un-
stained on standard microscope slides.

One slide per limb was read on an Optiphot fluorescence microscope
(Nikon, Garden City, NY). Using the Bioquant digitizing system (R&M
Biometrics, Nashville, TN), the following primary data were collected,
respectively, from the endocortical surface of tibiae and from periosteal
surfaces of ulnae at �150 magnification: bone perimeter (B.Pm), single
label perimeter (sL.Pm), double label perimeter (dL.Pm), and double
label area (dL.Ar). From these primary data, the following calculations
were performed: mineralizing surface [MS/bone surface (BS) � (1/2
sL.Pm � dL.Pm/B.Pm); percentage], mineral apposition rate (MAR �
dL.Ar/dl.Pm�4 d; microns per day), lamellar bone formation rate (BFR/
BS � MAR � MS/BS � 3.65; cubic microns per square microns per year).
To examine mechanically induced bone formation, bone formation pa-
rameters from the left limb (nonloaded control) were subtracted from
right limb values, producing a new set of relative values for each vari-
able: rMS/BS, rMAR, and rBFR/BS.

Effects of verapamil on blood pressure, serum PTH, and
serum calcium

In this study the dose of verapamil administered to rats was much
higher than that used in clinical applications. High doses of verapamil
may cause hypotension (22) or increase PTH secretion (30, 31), which,
in turn, might change the serum calcium level. We looked into these
possibilities by conducting a separate experiment to study the effect of
a single high dose verapamil treatment (100 mg/kg, orally) on blood
pressure, serum PTH, and serum calcium in rats.

Blood pressure was measured in five rats before, 45 min after, and 90
min after a single treatment with verapamil (100 mg/kg). Systolic blood
pressure (mm Hg) was measured indirectly using a tail-cuff blood pres-
sure system (model 129, IITC Life Sciences, Woodland Hills, CA). Rats
were restrained in holders and placed within a chamber maintained at
27 C. A tail cuff with photoelectric detector was placed at the base of the
tail and inflated. As the cuff pressure was slowly released, the photo-
electric cell detected the initiation of arterial blood flow through the tail
artery, which was recorded as the systolic blood pressure. Several mea-
surements were taken at each time point and averaged.

Blood samples were collected from five untreated rats, five verapam-
il-treated rats at 45 min after a dose of verapamil, and 90 min after a dose
of verapamil (100 mg/kg). Blood samples were allowed to clot at room
temperature and then were centrifuged at 2000 rpm for 15 min. Sera were
separated from those blood samples for measurements of serum PTH
and serum calcium. Serum PTH (picograms per milliliter) was measured
using a rat PTH immunoradiometric assay kit (Immunotopics, San
Clemente, CA). Serum calcium (milligrams per deciliter) was measured
using a Roche Cobas Mira Analyzer (GMI, Inc., Albertville, MN).

Statistical analysis

The data are expressed as the mean � sem. Bartlett’s test (a test of the
homogeneity of variances among groups) indicated that group variances
were equal (P � 0.5), suggesting that parametric statistical tests were
valid. Differences between the loaded (right) and nonloaded (left) limbs
were tested using paired t tests. Differences among group means were
tested for significance by ANOVA, followed by Fisher’s protected least

TABLE 1. Measurements of endocortical bone formation at tibia

Groups Load n
MAR (�m/d) MS/BS (%) BFR/BS (�m3/�m2�yr)

Mean � SEM P valuea Mean � SEM P valuea Mean � SEM P valuea

Vehicle
Right N 8 0.63 � 0.09 N.S. 26.74 � 4.84 N.S. 70.30 � 16.15 N.S.
Left 8 0.67 � 0.08 24.27 � 3.57 65.41 � 13.39

Verapamil
Right N 8 0.59 � 0.07 N.S. 29.34 � 3.89 N.S. 68.32 � 12.08 N.S.
Left 8 0.57 � 0.06 26.87 � 4.60 60.05 � 10.94

PTH
Right N 8 0.66 � 0.05 N.S. 28.82 � 2.92 N.S. 70.96 � 10.73 N.S.
Left 8 0.62 � 0.05 25.26 � 3.37 59.34 � 11.36

Verapamil � PTH
Right N 8 0.65 � 0.04 N.S. 30.60 � 4.13 N.S. 76.70 � 14.47 N.S.
Left 8 0.66 � 0.05 25.58 � 4.27 65.11 � 14.56

Vehicle
Right Y 8 0.91 � 0.07 �0.01 46.28 � 3.88 �0.001 155.98 � 18.93 �0.001
Left 8 0.73 � 0.07 23.19 � 2.90 64.65 � 12.51

Verapamil
Right Y 8 0.78 � 0.06 �0.05 28.64 � 2.82 �0.001 82.00 � 10.97 �0.01
Left 8 0.70 � 0.08 22.90 � 2.93 60.89 � 11.21

PTH
Right Y 8 1.00 � 0.11 �0.05 55.69 � 3.93 �0.001 204.25 � 27.69 �0.001
Left 8 0.72 � 0.04 24.40 � 2.65 64.25 � 6.68

Verapamil � PTH
Right Y 8 0.84 � 0.07 �0.05 35.00 � 5.26 �0.05 110.42 � 21.69 �0.01
Left 8 0.70 � 0.06 27.52 � 3.97 73.56 � 15.46

Values are means � SEM; N, No; Y, yes.
a Probability associated with paired t test between right and left values for each group. N.S. (not significant) indicates that the probability

exceeds 0.05.
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significant difference test (PLSD) for pairwise comparisons. Statistical
significance was assumed if P � 0.05.

Results

There were no differences in body weight among the
groups at the beginning or end of the experimental period.
The treatment with verapamil did not affect the animals’
activities throughout the experiment. Compared with the
baseline blood pressure (118.8 � 2.04 mm Hg), the average
blood pressure decreased by 4% and 12% at 45 min (113 �
2.07 mm Hg) and 90 min (104.6 � 6.75 mm Hg) after treat-
ment with verapamil, respectively, but the changes were not
statistically significant. Compared with the normal total se-
rum calcium (10.20 � 0.07 mg/dl), serum calcium was sig-
nificantly increased to 11.2 � 0.22 mg/dl 45 min after vera-
pamil treatment, but returned to normal levels (10.18 � 0.17
mg/dl) 90 min after treatment. There were no significant
differences in serum PTH among the normal controls
(12.38 � 2.64 pg/ml) and animals 45 min after (10.13 � 2.43
pg/ml) and 90 min after (11.18 � 3.92 pg/ml) a single dose
of verapamil.

Bone formation on the endocortical surface of tibiae

Histomorphometric measurements show that there was
no significant difference in MS/BS, MAR, and BFR/BS be-
tween right and left tibiae in the groups without loading, as
analyzed by the paired t tests (Table 1). However, in the
loading control group there were significantly higher MS/
BS, MAR, and BFR/BS in loaded (right) tibiae (P � 0.01)
compared with nonloaded (left) tibiae. Significant differ-
ences in MS/BS, MAR, and BFR/BS between right and left
tibiae were also found for all loading groups regardless of
treatment (P � 0.05; Table 1). The values for MS/BS, MAR,
and BFR/BS of left tibiae were not significantly different
among the groups. Treatment with verapamil significantly
reduced the mechanical loading effects on bone. Verapamil
suppressed the load-induced increase in MS/BS and BFR/BS
by 75% (P � 0.05) and 77% (P � 0.001), respectively (Fig. 3).
In contrast, PTH significantly enhanced the load-induced
increase in MS/BS and BFR/BS by 36% (P � 0.05) and 53%
(P � 0.01), respectively. Verapamil suppressed rMS/BS and
rBFR/BS on the right loaded tibiae in the animals subjected
to PTH and loading by 76% (P � 0.001) and 74% (P � 0.0001),
respectively.

Bone formation on the periosteal surface of ulnae

Histomorphometric measurements showed that there was
no significant difference in MS/BS, MAR, and BFR/BS be-
tween right and left ulnae in the groups without loading
(Table 2). However, there were significantly higher MS/BS,
MAR, and BFR/BS in loaded (right) ulnae of the loading
control animals (P � 0.01) compared with nonloaded (left)
ulnae. Significant differences in MS/BS, MAR, and BFR/BS
between right and left ulnae were also found for all treatment
groups with loading (P � 0.05; Table 2). The values for
MS/BS, MAR, and BFR/BS of left (nonleaded) ulnae were
not significantly different among the groups. Similar to that
in tibia, treatment with verapamil significantly inhibited the
mechanical loading effects on right loaded ulnae. Verapamil

suppressed the load-induced increase in MS/BS and BFR/BS
in the loading controls by 22% (P � 0.056) and 59% (P � 0.01),
respectively (Fig. 4). PTH significantly enhanced the loading
effect on the right loaded ulnae, increasing rMS/BS by 63%
(P � 0.01) and rBFR/BS by 76% (P � 0.01). Furthermore,
verapamil suppressed rMS/BS and rBFR/BS on right loaded
ulnae in animals subjected to PTH and loading by 39% (P �
0.01) and 68% (P � 0.001), respectively.

Discussion

We studied the in vivo effect of PTH on load-induced bone
formation in a system in which the L-type VSCCs were
blocked by verapamil. The mechanical loading was carried

FIG. 3. On the endocortical surface of tibia, the rMS/BS (A) and
rBFR/BS (B) were significantly decreased by verapamil. PTH plus
loading led to significantly higher rBFR/BS and rMS/BS than the
loading alone. Verapamil suppressed the synergistic effect of PTH and
loading. There was a significant difference in the rMAR (B) between
verapamil treatment and PTH treatment in loaded animals. Results
are expressed as the mean � SEM. *, P � 0.05 vs. vehicle loading group;
#, P � 0.001 vs. vehicle loading group; †, P � 0.05 vs. PTH loading
group (based on Fisher’s PLSD at � � 0.05).
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out using established in vivo loading models: rat tibial four-
point bending and ulna axial loading (16, 17, 20). Similar to
previous studies (16, 17, 20), a single bout of four-point
bending was sufficient to significantly increase lamellar bone
formation on the endocortical surface of the tibia, and a single
bout of axial loading was sufficient to significantly increase
lamellar bone formation on the periosteal surface of the ulna.
As we have reported previously (20), a single verapamil
treatment significantly inhibited load-induced bone forma-
tion compared with that in the loading control group. Con-
sistent with a previous report (5), a single PTH treatment
significantly enhanced load-induced bone formation com-
pared with loading alone. Moreover, verapamil treatment
significantly suppressed bone formation in animals sub-
jected to PTH treatment and loading.

We conclude that the synergism between PTH and me-
chanical loading in their effect on bone formation is mediated
in part by Ca2� entry into the osteoblast through L-type
VSCCs. This conclusion is supported by in vitro experiments
showing that PTH pretreatment of osteoblasts before me-
chanical loading produces a greater peak [Ca2�]i response
than loading alone (18, 32, 33) and the observation that PTH
can modulate VSCC-mediated Ca2� influx and at least par-
tially amplify L-type VSCC currents in various cell models
(19, 34–38). In addition, PTH can increase the activity and
single channel conductance of the mechanically sensitive,
cation-selective channel in UMR106.01 osteoblast-like cells
(39). Changes in the activation kinetics of the mechanically
sensitive channel produce a membrane depolarization that
could activate L-type VSCCs.

The earliest response of osteoblasts to fluid shear or me-
chanical strain is a rapid increase in [Ca2�]i (8), which can be

suppressed by L-type VSCC blockers (33). On the other hand,
PTH can enhance shear flow-induced increase in [Ca2�]i
osteoblastic cells, which can also be suppressed by the L-type
VSCC blocker nifedipine (19). Furthermore, in osteoblasts,
blockade of L-type VSCCs using either verapamil or nifed-
ipine inhibits [Ca2�]i signals and consequent cellular re-
sponses induced by PTH (18, 40–42). The L-type VSCC is the
best characterized channel among the voltage-sensitive and
voltage-insensitive currents that have been measured in os-
teoblasts, stromal precursor cells, osteocytes, and osteoblast-
like clonal cell lines (for review, see Ref. 43). These channels
may play a role in normal bone physiology. Low doses of
nifedipine given to growing rabbits over 10 wk significantly
reduce cancellous and cortical bone volume, MAR, and the
length of the epiphyseal growth plate (44).

Intermittent administration of PTH increases bone mass
and improves bone structure in vivo (1–3). Osteoblasts are the
primary target cells for the anabolic effects of PTH on bone
tissue. PTH may stimulate differentiation of osteoprogeni-
tors (1, 45, 46) and possibly prolong cell longevity (47). Most
actions of PTH-(1–34) on osteoblasts are mediated by the
PTH-1 receptor, a G protein-coupled receptor with seven
membrane-spanning domains (48). PTH can activate the
cAMP/protein kinase A pathway, the inositol lipid/Ca2�

(release of intracellular Ca2�)/protein kinase C pathway, or
both in osteoblast-like cells from rat or human (see review in
Ref. 49). Like mechanical loading, PTH can also increase
[Ca2�]i in bone cells by increasing both extracellular Ca2�

entry and intracellular Ca2� release. PTH could alter calcium
channel kinetics via cAMP or PKC (40, 50), possibly through
phosphorylation of sites on the various subunits of the chan-
nel protein. We have recently demonstrated that the PTH-

TABLE 2. Measurements of periosteal bone formation at ulna

Groups Load n
MAR (�m/d) MS/BS (%) BFR/BS (�m3/�m2�yr)

Mean � SEM P valuea Mean � SEM P valuea Mean � SEM P valuea

Vehicle
Right N 8 0.66 � 0.04 N.S. 37.66 � 4.04 N.S. 91.86 � 12.10 N.S.
Left 8 0.68 � 0.05 33.24 � 3.26 82.62 � 9.65

Verapamil
Right N 8 0.67 � 0.06 N.S. 34.38 � 1.02 N.S. 84.10 � 6.83 N.S.
Left 8 0.68 � 0.04 31.76 � 1.31 79.83 � 8.02

PTH
Right N 8 0.72 � 0.06 N.S. 36.19 � 3.18 N.S. 98.08 � 14.25 N.S.
Left 8 0.70 � 0.05 32.42 � 3.42 85.48 � 12.76

Verapamil � PTH
Right N 8 0.66 � 0.04 N.S. 37.02 � 2.35 N.S. 90.95 � 11.62 N.S.
Left 8 0.64 � 0.03 32.10 � 1.72 74.62 � 3.47

Vehicle
Right Y 8 1.11 � 0.10 �0.01 59.73 � 2.54 �0.001 239.43 � 19.91 �0.001
Left 8 0.71 � 0.02 37.70 � 1.45 97.92 � 5.42

Verapamil
Right Y 8 0.83 � 0.06 �0.01 49.34 � 3.06 �0.05 149.71 � 14.08 �0.01
Left 8 0.57 � 0.02 36.95 � 2.62 91.22 � 11.80

PTH
Right Y 8 1.31 � 0.11 �0.01 71.66 � 2.49 �0.001 345.88 � 37.96 �0.001
Left 8 0.75 � 0.02 35.67 � 2.81 97.07 � 7.51

Verapamil � PTH
Right Y 8 0.80 � 0.08 N.S. 55.39 � 5.07 �0.01 165.78 � 25.13 �0.05
Left 8 0.70 � 0.06 33.49 � 3.22 85.52 � 12.25

Values are means � SEM; N, No; Y, yes.
a Probability associated with paired t test between right and left values for each group. N.S. (not significant) indicates that the probability

exceeds 0.05.
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enhanced peak [Ca2�]i response to mechanical stimulation
can be blocked by the L-type VSCC inhibitor, nifedipine.
Furthermore, this enhanced response could be mimicked
through activation of the protein kinase A, but not the protein
kinase C, pathway (18).

The dose of verapamil used in the present study was
higher than the typical dose (4 mg/kg) used in humans. The
goal of clinical use is to partially block L-type VSCCs, re-
ducing their activity in the heart and thus treating arrhyth-
mias. To completely block the L-type VSCC, as we intended

in this study, a higher dose was necessary. Verapamil at 100
mg/kg was chosen because of its previously demonstrated
lack of toxicity on normal bone formation (20). A high dose
of verapamil, 100 mg/kg, did not change blood pressure or
serum PTH level. Treatment with 100 mg/kg verapamil also
did not significantly affect bone formation in the left (control)
bones of the rats in the present study, nor was bone formation
affected in the vehicle controls. Our data strongly suggest
that 100 mg/kg verapamil given as a single dose does not
substantially affect the rats’ overall health or skeletal biology.

Even with the high dose of verapamil used in this study,
bone formation induced by mechanical loading and by PTH
plus mechanical loading was not abolished completely. Ad-
ministration of verapamil suppressed BFR by 59–77%, which
is substantial, yet mechanical loading significantly increased
bone formation even in the presence of verapamil. Consid-
ering the high dose of verapamil used, it is reasonable to
assume that the majority of L-type VSCCs in bone cells were
blocked. Consequently, there must be another signaling
pathway independent of the L-type VSCC that contributes
about 25–40% to the bone formation resulting from mechan-
ical loading or PTH plus loading.

At the 100-mg/kg dose, verapamil might have effects not
specific to the L-type VSCC. Previous studies have shown a
possible effect of verapamil on PTH secretion (30, 31, 51, 52).
In our study, serum PTH did not change after a dose of
verapamil, nor was the serum calcium level different from
normal at the time of loading. These findings suggest that
verapamil treatment did not have substantial side-effects,
and the observed effects of treatment were probably due to
the effect of verapamil on calcium channels. Verapamil has
also been reported to modulate p-glycoprotein, a multidrug
transporter on cell membrane (53). We cannot rule out this
pathway as a mechanism for the verapamil response in the
present study. However, we know of no evidence relating
p-glycoprotein to mechanically induced bone formation. In
our previous study we showed that 20 mg/kg of both ve-
rapamil and another L-type VSCC blocker, nifedipine, sup-
pressed mechanically induced bone formation. The primary
effect of both drugs was on L-type VSCCs, and at the 20-
mg/kg dose, few nonspecific effects should be expected (22).
Verapamil administered at 100 mg/kg had very similar ef-
fects on load-induced bone formation as the 20-mg/kg dose
(20), suggesting that the higher dose of verapamil does not
activate pathways in addition to the primary effect on L-type
VSCCs. Other considerations include the possibility that ve-
rapamil alters the vasculature by inducing vasodilation. Our
data demonstrate that a single high dose of verapamil lowers
blood pressure somewhat, but not significantly. It is possible
that altered hemodynamics might affect mechanotransduc-
tion in bone tissue by affecting extracellular fluid flow near
bone cells. However, as noted above, bone cell mechano-
transduction is suppressed by lower doses of verapamil that
have much less effect on vascular tone. It seems most likely
that the effect of verapamil on bone mechanotransduction
was not due to changes in hemodynamics.

In conclusion, the present study suggests that blockade of
L-type calcium channels by verapamil suppresses load-
induced bone formation on the endocortical surface of tibia
and the periosteal surface of ulna. PTH improved load-

FIG. 4. On the periosteal surface of the ulna, the rMS/BS (A) and
rBFR/BS (C) were significantly decreased by verapamil. PTH com-
bined with loading led to significantly higher rBFR/BS and rMS/BS
than loading alone. As in the tibia, verapamil suppressed the syner-
gistic effect of PTH and loading. There was a significant difference in
the rMAR (B) between verapamil treatment and PTH treatment in
loaded animals. The rMAR (B) in animals receiving verapamil, PTH,
plus loading was also significantly lower than that in PTH plus load-
ing animals. Results are expressed as the mean � SEM. *, P � 0.05 vs.
vehicle loading group; #, P � 0.001 vs. vehicle loading group; †, P �
0.05 vs. PTH loading group (based on Fisher’s PLSD at � � 0.05).
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induced bone formation in the absence of verapamil, but the
improvement was nullified by verapamil. This suggests that
PTH enhances mechanically induced bone formation
through involvement of L-type calcium channels in vivo.
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