38 research outputs found

    Microbial Iron Reduction by Enrichment Cultures Isolated from Estuarine Sediments

    Get PDF
    Microbial Fe reduction in acetate- and succinate-containing enrichment cultures initiated with an estuarine sediment inoculum was studied. Fe reduction was unaffected when SO42− reduction was inhibited by MoO42−, indicating that both processes could occur independently. Bacterially produced sulfide precipitated as FeS but was not completely responsible for Fe reduction. The separation of oxidized Fe particles from bacteria by dialysis tubing demonstrated that direct bacterial contact was necessary for Fe reduction. Fe reduction in cultures amended with NO3− was delayed until NO3− and NO2− were removed. However, bacterial attachment to oxidized Fe particles in NO3−-amended cultures occurred early during growth in a manner similar to NO3−-free cultures. During late stages of growth, bacteria not attached to Fe particles became pale and swollen, while attached cells remained bright blue when examined by 4â€Č,6-diamidine-2-phenylindole epifluo-rescence microscopy. The presence of added oxidized Mn had no effect on Fe reduction. The results suggested that enzymatic Fe reduction was responsible for reducing Fe in these cultures even in the presence of sulfide and that cells incapable of Fe reduction became unhealthy when Fe(III) was the only available electron acceptor

    Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh

    Get PDF
    Sulfate reduction rates, dissolved iron and sulfide concentrations, and titration alkalinity were measured in salt marsh soils along a transect that included areas inhabited by both the tall and short forms of Spartina alterniflora and by Spartina patens. Pore waters were collected with in situ 'sippers' to acquire temporal data from the same location without disturbing plant roots. During 1984, data collected at weekly intervals showed rapid temporal changes in belowground biogeochemical processes that coincided with changes in S. alterniflora physiology. Rates of SO4(-2) reduction increased fivefold (to greater than 2.5 micromol ml(sup -1)d(sup -1)) when plants began elongating aboveground yet decreased fourfold upon plant flowering. This rapid increase in rates of SO4(-2) reduction must have been fueled by dissolved organic matter released from roots only during active growth. Once plants flowered, the supply of oxidants to the soil decreased and sulfide and alkalinity concentrations increased despite decreases in SO4(-2) reduction and increases in SO4(-2):Cl(-) ratios. Sulfide concentrations were highest in soils inhabited by tallest plants. During 1985, S. alterniflora became infested with fly larvae (Chaetopsis apicalis John) and aboveground growth ceased in late June. This cessation was accompanied by decreased rates of SO4(-2) reduction similar to those noted during the previous year when flowering occurred. After the fly infestation, the pore-water chemical profiles of these soils resembled profiles of soils inhabited by the short form of S. alterniflora. The SO4(-2) reduction rates in S. patens soils are the first reported. Rates were similar to those in S. alterniflora except that they did not increase greatly when S. patens was elongating. Tidal and rainfall events produced desiccation-saturation cycles that altered redox conditions in the S. patens soils, resulting in rapid changes in the dissolution and precipitation of iron and in the magnitude and spatial distribution of SO4(-2) reduction

    Elevated acetate concentrations in the rhizosphere of Spartina alterniflora and potential influences on sulfate reduction

    Get PDF
    Acetate is important in anaerobic metabolism of non-vegetated sediments but its role in salt marsh soils was not investigated thoroughly. Acetate concentrations, oxidation (C-14) and SO4(2-) reduction (S-35) were measured in S. alterniflora soils in NH and MA. Pore water from cores contained greater than 0.1 mM acetate and in some instances greater than 1.0 mM. Non-destructive samples contained less than 0.01 mM. Acetate was associated with roots and concentrations were highest during vegetative growth and varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of SO4(2-) reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a significant percentage of SO4(2-) reduction. These results differ markedly from data for non-vegetated coastal sediments where acetate levels are low, oxidation rate constants are high and acetate oxidation rates greatly exceed rates of SO4(2-) reduction. The discrepancy between rates of acetate oxidation and SO4(2-) reduction in marsh soils may be due either to the utilization of substrates other than acetate by SO4(2-) reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria

    Soil health cluster analysis based on national monitoring of soil indicators

    Get PDF
    A major challenge in soil science is to monitor and understand the state and change of soils at a national scale to inform decision making and policy. To address this, there is a need to identify key parameters for soil health and function and determine how they relate to other parameters, including traditional soil surveys. Here we present a national‐scale dataset of topsoil sampled as part of a wider agri‐environment monitoring scheme in Wales, UK. Over 1,350 topsoils (0–15 cm) were sampled across a very wide range of habitats and a range of physical, chemical and biological soil quality indicators were measured. We show consistent differences in soil physicochemical properties across habitat types, with carbon decreasing and pH increasing across the habitat productivity gradient from bogs through woodlands and grasslands to arable systems. The soils within our dataset are largely within the limits identified as important for supporting habitat function, with the exception of excessive phosphate levels in mesotrophic grassland. Cluster detection methods identified four soil functional classes based on measured topsoil properties, which were more related to habitat type than the genesis‐based soil classification from soil maps. These soil functional classes can be interpreted as phenoforms within the soil genoforms found by traditional soil classification. This shows the importance of land‐use management in determining the soil health and functional capacity of soils. Our work provides an account of the current state of soil health in Wales, its relationship to soil function and a baseline for future monitoring to track changes against agri‐environment and other policy targets

    A New Approach for Using GIS to Link Infiltration BMPs to Groundwater Pollution Risk

    No full text
    This research analyzed the efficiency of the BMP Siting Tool developed by the US Environmental Protection Agency and the Grey-to-Green Decision Support Tool. Both tools were used in conjunction with ArcGIS 10.1 to obtain cartographic data illustrating suitable sites for bioswales and infiltration basins in Hillsborough County, Florida. The data were integrated with the Karst Aquifer Vulnerability Index (KAVI) groundwater vulnerability model. The BMP Siting Tool sited 2.80% of all bioswales and 27.89% of all infiltration basins above vulnerable areas identified by the KAVI. Alternatively, 21.66% of all bioswales and 9.62% of all infiltration basins sited by the Grey-to-Green Decision Support Tool were above vulnerable areas. The results of this analysis prompted the proposal of a supplemental framework unique to each tool’s weakness. The idea behind the supplemental framework is to determine the most suitable sites for stormwater BMPs by refining the current siting framework to better respect groundwater integrity
    corecore