92 research outputs found

    Modeling Bound States in the Continuum for Multiple Electrons in a Quantum Dot Pair

    Get PDF
    The bound eigenstates of an electron inside a pair of quantum dots embedded on an infinite quantum wire are examined using the method of particular solutions. The eigenstates of a two-electron system in the same structure are examined perturbatively using wavefunction expansions for the one-electron eigenstates. The stability of the two-electron eigenstates is evaluated and compared with other theoretical results. It is found that stable bound states in the continuum exist for two electrons confined to this geometry

    Airport Expansions: The Need for a Greater Federal Role

    Get PDF

    Entanglement and hall viscosity

    Get PDF
    This dissertation studies quantum entanglement in relation to the geometric response known as Hall viscosity. We begin by reviewing geometric response in the quantum Hall effect in comparison to its well-known electromagnetic response, Hall conductivity. We develop an understanding of momentum transport due to Hall viscosity in analogy to charge transport under Hall conductivity. We apply our momentum transport argument to continuum and lattice models of the quantum Hall effect. We also leverage this insight to reveal a previously-unrecognized manifestation of Hall viscosity: the acoustic Faraday effect in superfluid Helium-3 B. We suggest that the acoustic Faraday effect is a new platform for the direct observation of Hall viscosity in Helium-3 B and other systems. We then turn our focus to the entanglement spectrum. We calculate the momentum polarization of lattice models of the quantum Hall effect to determine the Hall viscosity based on the entanglement spectrum, revealing the close connection between geometric response and entanglement. Finally, we turn away from the quantum Hall effect to consider other topological insulators; we use the entanglement spectrum to develop a topological classification of composite systems comprising components of topological phases in different dimensions. Our composite topological index generalizes classification of weak and antiferromagnetic topological insulators. We predict the presence of topological bound states localized to defects in systems that are trivial under all other topological classifications

    Heavy hydrocarbon main injector technology program

    Get PDF
    The Heavy Hydrocarbon Main Injector Program was an analytical, design, and test program to demonstrate an injection concept applicable to an Isolated Combustion Compartment of a full-scale, high pressure, LOX/RP-1 engine. Several injector patterns were tested in a 3.4-in. combustor. Based on these results, features of the most promising injector design were incorporated into a 5.7-in. injector which was then hot-fire tested. In turn, a preliminary design of a 5-compartment 2D combustor was based on this pattern. Also the additional subscale injector testing and analysis was performed with an emphasis on improving analytical techniques and acoustic cavity design methodology. Several of the existing 3.5-in. diameter injectors were hot-fire tested with and without acoustic cavities for spontaneous and dynamic stability characteristics

    Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    Get PDF
    Reengineering of the aircraft structural life prediction process to fully exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response to flight conditions, with resulting local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the life of aircraft structure and assuring its structural integrity is presented. The technical challenges to developing and deploying a Digital Twin are discussed in detail

    On key technologies for realising digital twins for structural dynamics applications

    Get PDF
    The term digital twin has gained increasing popularity over the last few years. The concept, loosely based on a virtual model framework that can replicate a particular system for contexts of interest over time, will require the development and integration of several key technologies in order to be fully realised. This paper, focusing on vibration-related problems in mechanical systems, discusses these key technologies as the building blocks of a digital twin. The example of a simulation digital twin that can be used for asset management is then considered. After briefly discussing the building blocks required, the process of data-augmented modelling is selected for detailed investigation. This concept is one of the defining characteristics of the digital twin idea, and using a simple numerical example, it is shown how augmenting a model with data can be used to compensate for the inherent model discrepancy. Finally the implications of this type of data augmentation for future digital twin technology is discussed

    Cardiac stunning during haemodialysis: the therapeutic effect of intra-dialytic exercise

    Get PDF
    Background Cardiovascular risk is elevated in end-stage renal disease. Left ventricular (LV) dysfunction is linked to repetitive transient ischaemia occurring during haemodialysis (HD). Cardiomyocyte ischaemia results in ‘cardiac stunning’, evidenced by regional wall motion abnormalities (RWMAs). Ischaemic RWMA have been documented during HD resulting in maladaptive cardiac remodelling and increased risk of heart failure. Intra-dialytic exercise is well tolerated and can improve quality of life and functional capacity. It may also attenuate HD-induced cardiac stunning. Methods This exploratory study aimed to assess the effect of intra-dialytic cycle ergometry on cardiac stunning. Twenty exercise-naïve participants on maintenance HD (mean ± SD, 59 ± 11 years) underwent resting echocardiography and maximal cardiopulmonary exercise testing. Subsequently, cardiac stunning was assessed with myocardial strain-derived RWMAs at four time points during (i) standard HD and (ii) HD with 30 min of sub-maximal intra-dialytic cycle ergometry at a workload equivalent to 90% oxygen uptake at the anaerobic threshold (VO2AT). Central haemodynamics and cardiac troponin I were also assessed. Results Compared with HD alone, HD with intra-dialytic exercise significantly reduced RWMAs after 2.5 h of HD (total 110 ± 4, mean 7 ± 4 segments versus total 77 ± 3, mean 5 ± 3, respectively; P = 0.008). Global cardiac function, intra-dialytic haemodynamics and LV volumetric parameters were not significantly altered with exercise. Conclusions Intra-dialytic exercise reduced cardiac stunning. Thirty minutes of sub-maximal exercise at 90% VO2AT was sufficient to elicit acute cardio-protection. These data potentially demonstrate a novel therapeutic effect of intra-dialytic exercise
    • …
    corecore