
© 2018 by Thomas Tuegel. All rights reserved.



ENTANGLEMENT AND HALL VISCOSITY

BY

THOMAS TUEGEL

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Michael Stone, Chair
Associate Professor Taylor L. Hughes, Director of Research
Associate Professor Smitha Vishveshwara
Assistant Professor Gregory MacDougall



Abstract

This dissertation studies quantum entanglement in relation to the geometric
response known as Hall viscosity. We begin by reviewing geometric response
in the quantum Hall effect in comparison to its well-known electromagnetic
response, Hall conductivity. We develop an understanding of momentum
transport due to Hall viscosity in analogy to charge transport under Hall
conductivity. We apply our momentum transport argument to continuum
and lattice models of the quantum Hall effect. We also leverage this in-
sight to reveal a previously-unrecognized manifestation of Hall viscosity: the
acoustic Faraday effect in superfluid 3He−B. We suggest that the acoustic
Faraday effect is a new platform for the direct observation of Hall viscosity
in 3He−B and other systems. We then turn our focus to the entanglement
spectrum. We calculate the momentum polarization of lattice models of the
quantum Hall effect to determine the Hall viscosity based on the entangle-
ment spectrum, revealing the close connection between geometric response
and entanglement. Finally, we turn away from the quantum Hall effect to
consider other topological insulators; we use the entanglement spectrum to
develop a topological classification of composite systems comprising compo-
nents of topological phases in different dimensions. Our composite topologi-
cal index generalizes classification of weak and antiferromagnetic topological
insulators. We predict the presence of topological bound states localized to
defects in systems that are trivial under all other topological classifications.
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Chapter 1

Introduction

The topological responses of the quantum Hall effect have been studied in-
tensely for more than three decades, beginning with the quantized integer
and fractional Hall conductance [2, 32, 69, 90, 104, 105, 127, 137] and more
recently the remarkable geometric responses. Quantum Hall systems exhibit
a dissipationless geometric response known as Hall viscosity [1, 2, 4, 7, 9,
12, 14, 15, 17, 20, 21, 34, 42–45, 49, 51, 57, 58, 62, 73, 92, 93, 104, 108,
120, 128, 136, 138, 142], which they share with other liquids that break
time-reversal symmetry [4]: not only the quantum Hall effect, but also the
quantum anomalous Hall effect [57, 58], and chiral superconductors/super-
fluids [14, 51, 104]. It has also been predicted in gapless systems where strain
fields couple to the low-energy electronic degrees of freedom as gauge fields
(emergent elastic gauge fields) such as graphene [24], borophene [141], and
Weyl semimetals [24, 68, 75]. Chapter 2 gives a generic description of Hall
viscosity in isotropic two-dimensional systems, which may be understood as
an effect of a Berry curvature of the ground state in analogy to the Hall
conductivity [7, 73]. We extend the analogy to describe momentum trans-
port due to Hall viscosity in the same manner as charge transport due to
Hall conductivity. Momentum transport under adiabatic conditions is used
to quantify the Hall viscosity of the integer quantum Hall effect in ordinary
Landau levels and linearly-dispersing Dirac–Landau levels. Chapter 3 ex-
tends the momentum transport method to lattice models of the quantum
Hall effect, overcoming difficulties defining momentum transport in systems
without continuous translation symmetry.

The material presented in this section was previously published in: Thomas I. Tuegel
and Taylor L. Hughes. “Hall viscosity and momentum transport in lattice and continuum
models of the integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92,
165127 (2015). doi: 10.1103/PhysRevB.92.165127 and Thomas I. Tuegel and Taylor L.
Hughes. “Hall viscosity and the acoustic Faraday effect”. Phys. Rev. B 96, 174524 (2017).
doi: 10.1103/PhysRevB.96.174524. Some text has been modified. Copyright by the
American Physical Society (APS). Reuse permitted according to APS copyright policies.
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Despite an exhaustive theoretical description of the geometric responses
of the quantum Hall effect developed over more than two decades, no ex-
periment has directly observed Hall viscosity in a two-dimensional electron
gas. The viscosity drives momentum transport, and the difficulty in directly
probing the 2DEG momentum is a significant obstacle to this observation.
However, the charge current and density responses at finite wavevector [52,
87], and the density response to spatial curvature [2, 17] have been pre-
dicted to have corrections due to the Hall viscosity, and may lead to more
realistic experimental proposals in the integer and fractional quantum Hall
contexts. Indeed, proposals exist to measure the Hall viscosity response [55]
and the electron viscosity more generally [129], but none have yet been re-
alized. Interestingly, the effects of the Hall viscosity have been observed in
a non-electronic system: a photonic analog of the quantum Hall effect [112],
and other recent articles propose to measure the Hall viscosity in superflu-
ids [37] and (classical) chiral active fluids [8]. Such systems may be a more
expedient route to observing this response because the momentum can be
probed directly. In Chapter 4, we explore another consequence of Hall vis-
cosity: circular birefringence of transverse acoustic waves, also known as the
acoustic Faraday effect. In fact, the acoustic Faraday effect has already been
observed in experiments in 3He−B, but the connection to the Hall viscosity
was not appreciated at the time. We expect that superfluid 3He−B could
serve as a new platform for the experimental study of geometric responses.
The connection to Hall viscosity is also relevant in other contexts where the
acoustic Faraday effect has been observed or predicted, e.g., in the crystal
Tb3Ga5O12 [123, 124] or in superconductor vortex lattices [27, 28, 118].

In the second half of this dissertation, we shift to the application of meth-
ods based on the entanglement spectrum. The entanglement spectrum has
come to popularity in the last decade as a purely-quantum classifier of con-
densed matter systems. Recently, the method has been applied to the study
of artificial neural-network states [26, 88] to justify the remarkable efficiency
of such representations of quantum states. The entanglement spectrum first
gained popularity in a variety of applications including the study of topo-
logical phases in the quantum Hall effect [30, 74, 100, 119], spin chains [16,
25, 97, 126], topological insulators and superconductors [31, 98, 134], and
others [22, 140]. The entanglement spectrum is found to correspond to the
spectrum of the boundary theory in a topological phase [31, 134] (due to the
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virtual boundary introduced to calculate the entanglement spectrum) in an
elucidation of the bulk-boundary correspondence; that realization led to the
development of a family of bulk entanglement spectrum methods [38, 39, 53,
54, 77, 110, 143], where an extensive cut throughout the system reveals the
critical theory at the phase transition. Chapter 5 lays the groundwork for
our applications of the entanglement spectrum.

In Chapter 6, we continue the study of Hall viscosity by using the en-
tanglement spectrum to compute the Hall viscosity coefficient of lattice and
continuum systems through the momentum polarization. The momentum
polarization was initially proposed to calculate the topological spin and cen-
tral charge of the conformal field theory at the edge of a topological phase;
these data are extracted from the expectation value of a certain translation
operator applied to a periodic system [130]. In addition to the universal fea-
tures of the conformal edge theory, the momentum polarization also contains
a non-universal contribution from the Hall viscosity [142].

Finally, we leave the Hall viscosity behind to discuss the classification
of topological phases based on the entanglement spectrum. Gapped free-
fermion systems exhibit a wide variety of symmetry-protected topological
(SPT) phases. Free-fermion SPT phases strongly protected by global time-
reversal, charge-conjugation, or chiral symmetries are classified under the
“tenfold way” of Altland-Zirnbauer classes [11, 59, 60, 63, 101, 102, 109, 113].
Descending from the strong SPT phases are weaker phases protected by local
translation (weak TIs) [36, 85, 107], point-group (crystalline TIs) [10, 35],
or antiferromagnetic (AFTIs) [29, 84, 117] symmetries. Defects, i.e., local
symmetry violations generate stable, localized bound states [103, 125]. In
Chapter 7, we describe the classification of composite systems comprising
components of different dimensionalities descending from the strong SPT
phases.

3



Chapter 2

Hall Viscosity

2.1 Introduction
Hall viscosity is a non-dissipative geometric response of time-reversal sym-
metry breaking fluids [4]. Under shear strain, the viscosity tensor η relates
the stress tensor T to the strain rate ẇ:

(2.1)T µν = −ηµναβẇαβ;

the (finite) strain tensor is

(2.2)wαβ =
1

2

(
gµν − g(0)µν

)
where g

(0)
µν is the metric of the undeformed system [122] where the strain

tensor is constructed from a symmetrized gradient of the local displacement
uα. In the limit of infinitesimal deformation along vector u, the definition
reduces to the Lie derivative of the metric with respect to u [67, 122],

(2.3)wαβ = L(u)gαβ =
1

2
(∂αuβ + ∂βuα).

The dissipative contributions to the viscosity, e.g., the bulk and shear vis-
cosities, then ηµναβ is symmetric under exchange of (µν) with (αβ). The
non-dissipative Hall viscosity generates an antisymmetric contribution, i.e.,

(2.4)ηµναβH = −ηαβµνH .

The antisymmetric part of the viscosity tensor in a two-dimensional isotropic
system is determined by a single parameter ηH , giving, in an orthonormal

The material presented in Chapter 2 was previously published in: Thomas I. Tuegel
and Taylor L. Hughes. “Hall viscosity and momentum transport in lattice and continuum
models of the integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92,
165127 (2015). doi: 10.1103/PhysRevB.92.165127. Some figures are reprinted with
minor modifications. Some text and figure captions have been modified. Copyright by the
American Physical Society (APS). Reuse permitted according to APS copyright policies.
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frame [4, 7],
(2.5a)η1112H = η1222H = −ηH
(2.5b)η1122H = 0.

The Hall viscosity can be calculated using a variety of different methods.
The first calculations were performed via the adiabatic transport of the Hall
fluid under shear strain on a torus [7, 73, 104, 128]. For Schrödinger electrons
at integer filling factors, this type of calculation yields ηH = h̄νρ/4 where
ρ is the electron number density, and ν is the integer filling fraction [7, 73,
104, 105]. More recently, Bradlyn, Goldstein, and Read [14] developed Kubo
formulas for the Hall viscosity which obtain the same result. Also, a new
possibility for calculating the Hall viscosity was proposed via the so-called
momentum polarization entanglement technique [130, 142], though there is
very little explicit discussion of the results of this method in the literature.
Remarkably, from the adiabatic transport calculations it has been shown
that for rotationally-invariant integer and fractional quantum Hall systems
in large magnetic fields, the viscosity is quantized in units of the density [104]
and takes the form

(2.6)ηH =
κ

4
h̄ρ

where κ is a universal number characterizing the particular integer/fractional
quantum Hall phase, and ρ is the uniform electron number density. Generi-
cally, the Hall viscosity has units of [ h̄

ℓ2
] for some length scale ℓ, but it need

not always retain such a clear quantization in terms of the particle density.

2.2 Hall conductivity and charge transport
Before considering the subject of momentum transport due to Hall viscosity,
it is useful to review charge transport due to Hall conductivity. Recall the
continuity equation for charge current:

(2.7)∂tρ+ ∂aJ
a = 0

where ρ is charge density and J is charge current. The Hall conductivity
relates the charge current to the electric field via

(2.8)Ja = σabEb.
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The similarity to Eq. (2.1) becomes apparent when we consider that the
electric field is a flux rate according to Faraday’s law,

(2.9a)Eb = −ϵbcΦ̇c

(2.9b)Ja = −σabϵbcΦ̇
c.

Time-reversal symmetry-breaking in the quantum Hall effect generates a
quantized, antisymmetric conductivity,

(2.10)σab = σHϵ
ab.

Consider an cylinder of length Lx periodic in the y–direction with cir-
cumference Ly. Threading flux along the axis of the cylinder, i.e., Φ̇x ̸= 0,
gives a Hall current in the same direction,

(2.11)Jx = σHΦ̇
x.

The current transports charge from left to right along the axis of the cylinder.
Imagine cutting the cylinder at x = 0; charge builds up in the right half at
a rate given by

(2.12)∂tQ =

∫ Ly

0

dy

∫ Lx

0

dx ∂tρ.

The continuity relation gives

(2.13)∂tρ = −∂xJx − ∂yJ
y;

the latter term on the right-hand side integrates to zero due to periodic
boundary conditions in the y-direction and the former term integrates to

(2.14)
∫ Lx

0

dx ∂xJ
x = Jx|Lx

x=0 = −Jx|x=0

where we have assumed that Jx|x=Lx
= 0. The Hall conductivity can be

determined from the charge transport rate,

(2.15)∂tQ = σH Ly ∂tΦ
x, or σH =

1

Ly

dQ

dΦx
.

The stress tensor (momentum current) is related to the strain rate in the same
way that charge current is related to the flux rate, so a similar procedure can
be used to calculate the Hall viscosity.
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2.3 Momentum transport
Now let us consider the closely-related problem of momentum transport in
the quantum Hall effect. To begin, let us explicitly define our terms with
respect to the metric and strain tensors. Suppose there is a coframe field ea

giving the metric
(2.16)gµν = δab e

a
µ e

b
ν .

There is a corresponding frame field denoted ea such that ea( eb) = δab . We
assume that the spatial connection ωa

bc is flat. The electromagnetic field
strength ieFab/h̄ is the curvature of the electromagnetic gauge connection
ieAa/h̄. The metric varies under the strain tensor wµν as

(2.17)g → (gµν + 2wµν) dx
µ dx ν .

Assuming uniform strain and an underlying Cartesian (x, y) coordinate sys-
tem yields three equations for the components of the strain tensor in terms
of the local frame,

(2.18a)gxx + 2wxx =
(
e1x
)2

+
(
e2x
)2

(2.18b)gyy + 2wyy =
(
e1y
)2

+
(
e2y
)2

(2.18c)gxy + 2wxy = e1x e
1
y + e2x e

2
y.

The first two equations describe circles in the e1x– e2x plane and the e1y– e2y
plane, respectively, so it is illustrative to parameterize the coframe fields as:

(2.19a)e1 = dx rx cosϕx − dy ry sinϕy

(2.19b)e2 = dx rx sinϕx + dy ry cosϕy

Under this parameterization, the strain tensor equations above are reduced
to

(2.20a)gxx + 2wxx = r2x
(2.20b)gyy + 2wyy = r2y
(2.20c)gxy + 2wxy = rxry sin (ϕx − ϕy).

Under strain, the area scales as

(2.21)
√

det g = rxry cos (ϕx − ϕy),

the area of the parallelogram with sides ex and ey in the e1– e2 plane. The
last two equations encode the fact that a uniform rigid rotation of the frame

7



e1

e2
ex

ey

ϕx

ϕy

rx ry

Figure 2.1: The x–y (strained) and u–v (lab) coordinate systems.

field, i.e., shifting ϕx and ϕy together, induces no strain. For reference, the
frame fields are

(2.22a)
√

det g e1 = ry cosϕy∂x − rx sinϕx∂y

(2.22b)
√

det g e2 = ry sinϕy∂x + rx cosϕx∂y

The coframe fields inspire us to define an orthogonal coordinate system
(2.23a)u = x rx cosϕx − y ry sinϕy

(2.23b)v = x rx sinϕx + y ry cosϕy

so that du = e1 and dv = e2 (and likewise ∂u = e1 and ∂v = e2).
The structure of the Hall viscosity tensor implies that strain under chang-

ing ϕx−ϕy leads to momentum transport parallel to the direction of momen-
tum (T 11 and T 22) while changing rx and ry leads to momentum transport
perpendicular to the momentum direction (T 12). A convenient parameteri-
zation for shear strain (area-preserving deformations) is to set

(2.24a)ry = r−1
x = α

(2.24b)ϕx = ϕy = 0

so that
(2.25a)−ẇ11 = ẇ22 =

α̇

α
(2.25b)ẇ12 = ẇ21 = 0.

The Hall viscosity gives rise to stress tensor components odd under time
reversal,

(2.26)T 12
(odd) = T 21

(odd) = 2ηH
α̇

α

When the system is anisotropic (α ̸= 1), we can have η1122H ̸= 0. Unfortu-
nately, that term cannot be extracted from the momentum transport calcula-
tion because it does not appear in the relevant component of the stress tensor,
but it also does not affect our calculation of the other viscosity coefficients.

8



By analogy to the case of charge transport considered in Section 2.2,
we calculate the momentum transported into the right half of a cylindrical
system as it is deformed. We take the cylinder to have length L and circum-
ference 2πR; the length and circumference vary because the cylinder is under
strain; it is helpful to define the cylinder’s strained dimensions L = α−1L0

and R = αR0 in terms of its original dimensions L0 and R0. If PR is the
projection operator onto the right half-cylinder, then the total momentum in
that half is

(2.27)⟨ΠyPR⟩ =
∫ L

0

du

∫ 2πR

0

dv Πy(u, v)

where Πy = Py + eAy is the canonical momentum density. The stress tensor
gives the momentum flux across the cut [3, 40], i.e.,

(2.28)∂tΠy + ∂aT
a
y = 0.

Using the continuity equation, and assuming that the momentum flux T 12

vanishes at u = L,

(2.29)∂t⟨ΠyPR⟩(odd) =

∫ 2πR

0

dv ebyT
1
b

∣∣
u=0

= 4πR ηHα̇.

where we have used periodicity in the v-coordinate to eliminate a term ∂vT
2
2

and evaluated the integral using translation invariance, assuming the ground
state is uniform. From this equation we can immediately read-off the impor-
tant result:

(2.30)ηH =
1

4πR

1

α̇
∂t⟨ΠyPR⟩(odd) =

1

2πR0

d

dα2
⟨ΠyPR⟩(odd).

We use this relationship between ηH and the strain-dependence of the half-
cylinder momentum to calculate the viscosity. The subscript (odd) indicates
that we have antisymmetrized the term under B → −B, i.e.,

(2.31)2⟨ΠyPR⟩(odd) = ⟨ΠyPR⟩|B − ⟨ΠyPR⟩|−B,

although we make liberal use of the fact that ⟨ΠyPR⟩|B = −⟨ΠyPR⟩|−B for
the systems considered here.

2.4 Landau levels

2.4.1 Hamiltonian and wavefunctions

Let us begin with the conventional Landau level problem of electrons moving
in two-dimensions through a uniform transverse magnetic field, including the

9



possibility of geometric deformations similar to Ref. [7]. The Hamiltonian of
such a system is

(2.32)H =
1

2m

(
Π2

1 +Π2
2

)
.

Πa is the canonical momentum given by −ih̄∇a where ∇a is the spatially-
and gauge-covariant derivative. As is conventional, we define the lowering
operator

(2.33)â =
1√

2h̄eF12

[Π1 − iΠ2]

and its conjugate, â†. It is easy to verify that â and its conjugate are the
ladder operators of a harmonic oscillator,

(2.34)
[
â, â†

]
=

−h̄
2eF12

[∇1 − i∇2,∇1 + i∇2] =
−ih̄
eF12

[∇1,∇2] = 1.

The field strength F12 = B (i.e., the transverse magnetic field) arises because
it is the curvature [∇1,∇2] of the gauge connection. Although the spatial
curvature is set to zero here, it would have entered the calculation in the
same way as the gauge curvature; this explains the approach of Schine et al.
[112] to treat spatial curvature as a modification to the local magnetic field.
The Hamiltonian is revealed to be the harmonic oscillator,

(2.35)H = h̄ω

(
â†â+

1

2

)
where ω = eB/m is the cyclotron frequency. The harmonic oscillator takes
discrete energy values which are termed Landau levels for this problem. The
Landau level wavefunctions ϕ(n) are generated by

(2.36a)â ϕ(0) = 0

(2.36b)â† ϕ(n−1) =
√
nϕ(n).

The Landau level wavefunctions are given by Avron, Seiler, and Zograf
[7] and Lévay [73] under arbitrary strain on a torus (periodic in x and y

coordinates). To make connection with more recent iDMRG work [92, 142],
and to aid analogy to Hall conductivity, we work with wavefunctions on a
cylinder periodic in the v-coordinate with infinite extent in the u-coordinate.
The lowest Landau level wavefunction is the null vector of the harmonic
oscillator lowering operator â; in u–v coordinates, this condition is

(2.37)0 =
1√

2h̄eF12

[Π1 − iΠ2]ϕ(0)

10



under the boundary conditions

(2.38a)ϕn(u, v) = ϕn(u, v + 2πR)
(2.38b)lim

u →±∞
ϕn(u, v) = 0.

We impose periodicity in the v-coordinate instead of the y-coordinate because
the application of uniform strain with periodicity in y leads to an unnatural
twisted boundary condition. To proceed further, we must choose an electro-
magnetic gauge; the periodic boundary condition suggests the Landau gauge,
A = B u dv . In this gauge, the lowest Landau level wavefunction satisfies

(2.39)0 =
1√
2h̄eB

[−ih̄ ∂1 − (h̄ ∂2 − i eB u)]ϕ0

or

(2.40)ϕ0(k; u, v) =
exp

[
ikv − 1

2

(
ℓ−1
B u+ ℓBk

)2]√
2πR ℓB

√
π

where ℓ2B = h̄/eB and k = n/R for n ∈ Z. The strain dependence of the
wavefunction enters through the radius of the cylinder R = αR0, where R0

is the undeformed radius of the cylinder. The raising operator â† generates
the higher Landau level wavefunctions from ϕ0; the general formula for the
wavefunctions of the n-th Landau level is

(2.41)ϕn(k; u, v) =
exp

[
ikv − 1

2

(
ℓ−1
B u+ ℓBk

)2]√
2(n+1)n! π3/2R ℓB

Hn

(
ℓ−1
B u+ ℓBk

)
,

where Hn is the n-th Hermite polynomial.

2.4.2 Hall viscosity

To obtain a Hall viscosity formula for the n-th Landau level, we expand
Eq. (2.30) in terms of the single-particle eigenstates,

(2.42)η
(n)
H =

1

2πR0

d

dα2

[∑
k

h̄αk⟨PR⟩(n,k)

]
+

eB

2πR0

d

dα2

[∑
k

α⟨uPR⟩(n,k)

]
.

n indexes Landau levels and
∑

k is the sum over occupied states by wavenum-
ber k. The second term above vanishes here, in the limit L → ∞, but in
Section 2.6 we consider how it gives rise to an edge dipole moment in finite
systems; in either case, it does not contribute to momentum transport.

11



Using Eq. (2.42), it is straightforward to calculate the Hall viscosity for
a system of Landau levels by the momentum transport method. At filling
factor ν, we need only compute the derivative of

(2.43a)⟨PyPR⟩ =
ν−1∑
n=0

K∑
k=−K

h̄αk Cn(k)

(2.43b)where Cn(k) =

∫ ∞

0

du

∫ 2πR

0

dv |ϕn(k; u, v)|2 .

with respect to α, cf. Eq. (2.30). We note two things:

1. Cn(k) is the probability of finding a particle on the right (u > 0) half
of the cylinder, given that the particle is in the state ϕn(k), and

2. these quantities match the correlation-function eigenvalues Cn(k) if one
calculates the entanglement spectrum of this system by cutting the
cylinder at u = 0.

Thus the projections Cn(k) of the Landau level wavefunctions onto the right
half-cylinder are also used to evaluate the momentum polarization. We list
their analytic forms here for the first three Landau levels:

(2.44a)C0(k) =
1

2
erfc (kℓB)

(2.44b)C1(k) = kℓB
1√
π
e−(kℓB)2 +

1

2
erfc (kℓB)

(2.44c)C2(k) =

[
(kℓB)

3 +
1

2
kℓB

]
1√
π
e−(kℓB)2 +

1

2
erfc (kℓB)

The strain dependence of the projections Cn(k) is not manifest; recall that
the quantization of k depends on α. The half-cylinder projections were also
computed by Rodrı́guez and Sierra [106]. The Landau level wavefunctions are
localized in u, so we expect Eq. (2.43a) to converge for sufficiently large, but
finite K, although we should ostensibly take K → ∞. The last filled states
are centered at u = ±Kℓ2B; we find that the viscosity derived from the sum
over k converges to its expected continuum value when K >

√
2πℓ−1

B , i.e.,
when each half of the cylinder is wider than a single wavefunction. We show
the result of the viscosity calculation when successively filling up to the first
three Landau levels in Fig. 2.2. We see that the Hall viscosity contribution
from each Landau level converges to the established result [73]

(2.45)η
(n)
H =

h̄

8πℓ2B
(2n+ 1),

12



ν=1

ν=2

ν=3

0 1 2 3 4

Lx

2π lB

0.5

1.0

1.5

2.0

2.5

ηH/ℏρ0

⨯⨯⨯⨯
⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯

⨯
⨯⨯

⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯

⨯
⨯
⨯
⨯
⨯
⨯
⨯⨯

⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯

ν=1

ν=2

ν=3

0 1 2 3 4

Lx

2π lB

0.5

1.0

1.5

2.0

2.5

ηH/ℏρ0Figure 2.2: The Hall viscosity (ηH) of the lowest Landau levels calcu-
lated by the momentum transport method. The calculation converges when
Lx > 2

√
2πℓB, i.e., when each half of the cylinder is wider than a single wave-

function. The Hall viscosity is given in units of h̄ρ0 where ρ0 = 1/2πℓ2B is
the electron density of the lowest Landau level. From: Thomas I. Tuegel
and Taylor L. Hughes. “Hall viscosity and momentum transport in lattice
and continuum models of the integer quantum Hall effect in strong magnetic
fields”. Phys. Rev. B 92, 165127 (2015). doi: 10.1103/PhysRevB.92.
165127.

which is the Hall viscosity contribution of the n-th Landau level.

2.4.3 Thermodynamic limit

The result above is also obtained analytically in the thermodynamic limit.
Beginning from Eq. (2.30),

(2.46)η
(n)
H =

1

2πR0

d

dα2
⟨ΠyPR⟩(n).

we proceed by calculating

1

2πR0

⟨ΠyPR⟩(n) =
α

2πR0

h̄

ℓB

∑
k

∫ ∞

0

du

∫ 2πR

0

dv
(
ℓBk + ℓ−1

B u
)
|ϕn(k; u, v)|2

(2.47)
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where the Landau level wavefunctions are given by Eq. (2.41). Next define
ξ = ℓ−1

B u+ ℓBk so that

(2.48)1

2πR0

⟨ΠyPR⟩(n) =
α

2πR0

h̄

ℓ2B

∑
k

∫ ∞

0

du
ξe−ξ2

2nn!
√
π
Hn(ξ)

2.

The limit R0 → ∞ to converts the sum over k to an integral in the thermo-
dynamic limit,

(2.49)1

2πR0

⟨ΠyPR⟩(n) =
h̄α2

2πℓ2B

∫ ∞

−∞
dk

∫ ∞

0

du
ξe−ξ2

2nn!
√
π
Hn(ξ)

2.

This is the expression differentiated in Eq. (2.30) to determine the viscosity.
At this point, one might naively think to carry out the integration over ξ

by making a change of variable, but ξ is the sum of two potentially diverging
quantities; we must take great care with the limits of integration because x
assumes only positive values, while k covers the entire real line. If the lower
bound on the x integral were −∞, we could be somewhat careless about the
order of limits, but we must take the limits simultaneously,

(2.50)1

2πR0

⟨ΠyPR⟩(n) = lim
K→∞

h̄α2

2πℓ2B

∫ K

−K

dk

∫ Kℓ2B

0

du
ξe−ξ2

2nn!
√
π
Hn(ξ)

2.

Now we are free to carry out the integrals in either order; beginning with the
integral over k,

(2.51)
∫ K

−K

dk
ξe−ξ2

2nn!
√
π
Hn(ξ)

2 =
1

2nn!
√
πℓB

∫ U+Ξ

U−Ξ

dξ ξe−ξ2Hn(ξ)
2

where Ξ = ℓBK and U = ℓ−1
B u. We denote as In(U) the integral

(2.52)In(U) =

∫ U+Ξ

U−Ξ

dξ ξe−ξ2Hn(ξ)
2.

Integrating by parts obtains

(2.53)In(U) =
1

2

[
e−ξ2Hn(ξ)

2
]∣∣∣U−Ξ

U+Ξ
+Gn(U)

where
(2.54)Gn(U) = 2n

∫ U+Ξ

U−Ξ

dξ e−ξ2Hn(ξ)Hn−1(ξ).

In this step we have used the derivative of the Hermite polynomial,

(2.55)∂ξHn(ξ) = 2nHn−1(ξ).
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We evaluate Gn(U) by developing a recursion relation: First, we use the
recursion relation for the Hermite polynomials,

(2.56)Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ),

to reduce the order of the Hn(ξ) term:

(2.57)
Gn(U) = 4n I

(n−1)
1 (U)− 2nGn−1(U)

= 2n
[
e−ξ2Hn−1(ξ)

2
]∣∣∣U−Ξ

U+Ξ
+ 2nGn−1(U).

With this recursion relation in mind, and noting that G0(U) = 0, we rewrite
the recursion relation as an explicit sum:

(2.58)Gn(U) =
n∑

m=1

2mn!

(n−m)!

[
e−ξ2Hn−m(ξ)

2
]∣∣∣U−Ξ

U+Ξ
.

At this point we have a complete expression for I1(U), which can be written

(2.59)In(U) = Fn(U − Ξ)− Fn(U + Ξ)

where we have defined

(2.60)Fn(ξ) =
1

2
e−ξ2Hn(ξ)

2 +
n∑

m=1

2mn!

(n−m)!
e−ξ2Hn−m(ξ)

2.

We return to our expression for the projected momentum, which now
reads

(2.61)1

2πR0

⟨ΠyPR⟩(n) = lim
K→∞

h̄α2

2πℓ2B

∫ Kℓ2B

0

du
In(U)

2nn!
√
πℓB

.

Changing variables gives

(2.62)1

2πR0

⟨ΠyPR⟩(n) = lim
K→∞

h̄α2

2πℓ2B

∫ KℓB

0

dU
In(U)

2nn!
√
π

The integral can be expanded in terms of Fn:

(2.63)
∫ KℓB

0

dU In(U) =

∫ KℓB

0

dU Fn(U − Ξ)− Fn(U + Ξ).

Making separate changes of variable Y = U − Ξ and Z = U + Ξ gives

(2.64)
∫ KℓB

0

dU In(X) =

∫ 0

−KℓB

dY Fn(Y )−
∫ 2KℓB

KℓB

dZ Fn(Z).
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The bounds of both integrals may be expanded simultaneously to give

(2.65)
∫ KℓB

0

dU In(U) =

∫ KℓB

−KℓB

dY Fn(Y )−
∫ 2KℓB

0

dZ Fn(Z).

The function Fn is even, so the latter term may be written

(2.66)
∫ 2KℓB

0

dZ Fn(Z) =
1

2

∫ 2KℓB

−2KℓB

dZ Fn(Z).

Now it becomes obvious that both integrals are equal in the K → ∞ limit,
so that

(2.67)lim
K →∞

∫ KℓB

0

dU In(U) =
1

2

∫ ∞

−∞
dY Fn(Y ).

If we had not taken care with the order of limits in the beginning, we would
not have obtained this result here.

Returning to the expression for the projected momentum,

(2.68)1

2πR0

⟨ΠyPR⟩(n) =
h̄α2

4πℓ2B

∫ ∞

−∞
dY

Fn (Y )

2nn!
√
π

where
(2.69)

∫ ∞

−∞
dY

Fn (Y )

2nn!
√
π
=

1

2
(2n+ 1) .

The projected momentum is

(2.70)1

2πR0

⟨ΠyPR⟩(n) =
h̄α2

8πℓ2B
(2n+ 1).

Finally, from Eq. (2.30), we obtain the Hall viscosity of the nth Landau level,

(2.71)η
(n)
H =

h̄

8πℓ2B
(2n+ 1) ,

in agreement with previous results [7, 73, 104, 105].

2.5 Dirac–Landau levels

2.5.1 Hamiltonian and wavefunctions

The quantum Hall effect was originally understood in the context of elec-
tron motion obeying the Schrödinger equation, i.e., a quadratic dispersion
relation. As the Schrödinger equation is the spin-polarized, non-relativistic
limit of the Dirac equation for electrons, it is not surprising that the latter
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also exhibits quantized Landau levels under a magnetic field. This quantum
Hall effect in linearly-dispersing electrons became fundamentally important
with the rise of graphene [18], and more recently has become relevant in the
study of 3D topological insulators with low-energy surface fermions of Dirac
nature [47]. The Landau level problem is described by the massive Dirac
Hamiltonian under strain,

(2.72)H = vFσ
1Π1 + vFσ

2Π2 +mσ3

where vF is the Fermi velocity, m is the mass, and σa are the Pauli matrices,

(2.73)σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0

0 −1

)
.

The Hamiltonian can be reformulated in terms of the harmonic oscillator
ladder operators (2.33),

(2.74)H =

(
m vF

√
2h̄ eB â

vF
√
2h̄ eB â† −m

)
so that the Dirac–Landau level wavefunctions are

(2.75a)ψ0(k) =

(
0

ϕ0(k)

)

(2.75b)ψ±n(k) =
1√

n+ p2±n

(
p±n ϕn(k)√
nϕn+1(k)

)

where ϕn are the Landau level wavefunctions (2.41); for convenience, we
define p±n = γ ±

√
γ2 + n where γ = m/vF

√
2h̄ eB is the ratio of (mass and

magnetic) energy scales in the problem. The energy eigenvalues are

(2.76a)E(0) = −γvF
√
2h̄ eB = −m

(2.76b)E(±n) = ±vF
√
2h̄ eB

√
γ2 + n.

2.5.2 Hall viscosity

Now that we have the Landau level wavefunctions, we can calculate the
viscosity using Eq. (2.30), i.e., by differentiating

⟨PyPR⟩ =
K∑

k=−K

h̄αk

C0(k) n = 0(
nCn(k) + p±n(γ)

2Cn−1(k)
)(
n+ p±n(γ)

2)−1
n > 0.

(2.77)
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Figure 2.3: The Hall viscosity (ηH) of the lowest Dirac–Landau levels calcu-
lated by the momentum transport method. As in Figure 2.2, the calculation
converges when Lx > 2

√
2πℓB. The derivatives in Eq. (2.30) were taken nu-

merically with ⟨pyPR⟩ given by Eq. (2.77). The Hall viscosity is given in
units of h̄ρ0 where ρ0 = 1/2πℓ2B is the electron density of the lowest Landau
level. From: Thomas I. Tuegel and Taylor L. Hughes. “Hall viscosity and
momentum transport in lattice and continuum models of the integer quan-
tum Hall effect in strong magnetic fields”. Phys. Rev. B 92, 165127 (2015).
doi: 10.1103/PhysRevB.92.165127.

Recall that Cn(k) is defined in Eq. (2.43a), and matches our earlier results
since the Dirac–Landau levels are constructed from the Schrödinger Landau
levels.

The connection between the Dirac and Schrödinger Landau-levels leads
us to conclude that the Hall viscosity of each Dirac–Landau level is

(2.78)η
(n)
H,D =


η
(0)
H,S n = 0

(
nη

(n)
H,S + p±n(γ)

2η
(n−1)
H,S

)
/
(
n+ p±n(γ)

2) n ̸= 0

where η(n)H,S is the Hall viscosity (2.45) of the nth Landau level of the contin-
uum Schrödinger equation. In the massless limit, when m = γ = 0 so that
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p±n = ±
√
n, we find

(2.79)η
(n)
H,D =

h̄/(8πℓ2B) n = 0

h̄ |n| /(4πℓ2B) n ̸= 0.

This result is in agreement with previous work by Kimura [62] based on an
adiabatic curvature calculation, except in the case n = 0, for which we have
found a value twice as large. We attribute the difference to a probable error
in the normalization of the zeroth Landau level in Ref. [62]. We confirm
the results numerically in Fig. 2.3 using the momentum transport method of
calculating the Hall viscosity. Because the Hall viscosity of the Dirac–Landau
levels is expressed in terms of the Hall viscosity of the Schrödinger–Landau
levels, the convergence criterion is expected to be the same. Indeed, we
find the result converges to the expected value when Lx > 2

√
2πℓB. The

same result is obtained by the momentum polarization method, with similar
convergence criteria, though we do not show the figure here.

Let us now test if the Dirac calculation reproduces the Schrödinger result
in the large mass (γ → ±∞) limit:

(2.80a)p+n(γ) ≈ 2γ +
n

2γ2

(2.80b)p−n(γ) ≈
n

2γ2

and the resulting wavefunctions are

(2.81a)ψ+n(k) ≈

(
0

ϕn+1(k)

)

(2.81b)ψ−n(k) ≈

(
ϕn(k)

0

)
.

The limiting values of the wavefunctions can easily be determined by con-
sidering the order, with respect to γ, of each component of the spinors.
Additionally, the ψ0 wavefunction is completely unmodified in this limit.
From this result we can conclude immediately that, in the infinite mass
limit, the Dirac Landau levels carry the same set of values of the viscos-
ity as Schrödinger Landau levels, though we still need to see how they are
organized. Additionally, in this limit the energy eigenvalues are

(2.82a)E0 = −m

(2.82b)E±n ≈ ±
√
2h̄eB

(
γ +

n

2γ

)
= ±|E0|±h̄ωn
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with ω = |eB/m| the usual cyclotron frequency. The spectrum has a gap of
width 2|E0| with Landau levels above and below separated from neighboring
Landau levels by a gaps of uniform width h̄ω, much like the Schrödinger
spectrum.

The conclusions so far hold generically in the γ → ±∞ limits. Let us now
consider each limit independently, and furthermore, let us consider taking
each limit by fixing B and sending m → ±∞, respectively. In either case,
the wavefunction of the n = 0 Landau level is essentially unchanged from
the Schrödinger system. When m → ∞, the n = 0 Landau level sits at
the top of the valence (E < 0) band, separated from the n > 0 Landau
levels by the (large) mass gap. On the other hand, when m → −∞, the
n = 0 band sits at the bottom of the conduction (E > 0) band with only the
cyclotron gap separating it from the n > 0 states. It is this configuration,
when m → −∞, and with the E < 0 states filled, which more precisely
matches the Schrödinger case. This should not be surprising; the mσz term
of the Hamiltonian attaches a positive mass to the n = 0 Landau level when
m < 0. Thus, we see that the massive Dirac case matches the Schrodinger
case if one focuses on the positive energy levels when m→ −∞.

2.6 Edge dipole moment
Until now, we have considered infinite cylindrical systems. Our argument
that the Hall viscosity can be calculated by measuring the momentum flow
across a cut relies mainly on the fact that, while momentum flows into the
right half at u = 0, it does not flow out again. Therefore, we expect our
argument to apply equally well to finite systems since we are measuring the
momentum transport deep inside the bulk. However, we know from Haldane
[45] that systems with non-zero Hall viscosity support a dipole moment at
an edges. We show that the dipole moment complicates the calculation in a
finite system and how the complications is resolved.

Following Haldane [45], there is a dipole moment at the edge of a quantum
Hall system originating from electrostatic equilibrium: the electric force on
the dipole moment is required to balance the pressure (from the Hall viscosity
response) at the edge. The dipole moment is

(2.83)dpa = −∆QabϵbcdL
c
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where pa is the anomalous particle number dipole moment, dLc is the length
element along the edge, and Qab is a symmetric tensor related to the viscosity:

(2.84)ηa c
b d =

h̄

2ℓ2B
ϵbeϵdf

(
ϵacQef + ϵafQec + ϵecQaf + ϵefQac

)
.

From this relation, it is straightforward to calculate

(2.85)Qgh =
ℓ2B
h̄
ϵacϵ

gbϵhdηa c
b d.

Using the strain configuration described in Eq. (2.24) this gives

(2.86a)Q12 = Q21 = 0

(2.86b)Q11 = Q22 =
ℓ2B
h̄
ηH

Hence, a semi-infinite cylindrical system with radius R and an edge on the
right has a dipole moment

(2.87)p1 =
ℓ2B
h̄
2πR∆ηH

where ∆ηH is the change in Hall viscosity across the edge.
The preceding argument also applies to the finite cylinder by noting that

the electrostatic equilibrium condition at the edge applies equally well to
both edges. Now consider the right half of the finite cylinder. There is no
force applied at its left boundary, i.e., at the center of the entire cylinder,
deep in the bulk, because the pressure vanishes inside a Hall fluid [45]. At
the right edge there is a dipole moment

(2.88)p1 =

∫ 2πR

0

dv

∫ ∞

0

du (ρ− ρ0)(u− uR) = 2πR
ℓ2B
h̄
∆ηH

where uR is the location of the right edge, and ρ0 is the uniform, neutralizing
background charge density. Total charge neutrality requires that

(2.89)uR

∫ ∞

0

dx (ρ− ρ0) = 0

so we may express the dipole moment independently of choice of origin:

(2.90)px =

∫ 2πR

0

dv

∫ ∞

0

du (ρ− ρ0)αu.

For a discrete system with open boundaries this becomes

(2.91)px =
∑
u>0

∑
n,k

(
|ϕn(k; u)|2 − ρ0

)
αu
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with the neutrality requirement that

(2.92)
∑
u >0

∑
n,k

(
|ϕn(k; u)|2 − ρ0

)
= 0.

Noting that ρ0 is independent of α, the derivative of the dipole moment is

(2.93)dpx

dα2
=

d

dα2

[∑
k

α⟨uPR⟩(n,k)

]

which exactly matches the second term of Eq. (2.42) to yield

(2.94)η
(n)
H =

1

2πR0

d

dα2

[∑
k

h̄αk⟨PR⟩(n,k)

]
+

eB

2πR0

dpx

dα2

for a finite system. We see now that the second term of Eq. (2.42) captures
an edge effect due to the boundary dipole. While the dipole moment is ulti-
mately due to the viscosity, it does not contribute to bulk transport. Indeed,
infinite systems lack the edge to support a dipole moment, yet there is bulk
momentum transport which is fully captured by the first term. Therefore,
we may safely disregard the edge dipole moment term if we compute the
viscosity from ⟨PyPR⟩ rather than ⟨ΠyPR⟩.

2.7 Summary
In Chapter 2 we introduced Hall viscosity, a non-dissipative geometric re-
sponse of time-reversal symmetry breaking fluids, particularly the Landau
levels of the quantum Hall effect. The Hall viscosity coefficient describes mo-
mentum transport in analogy to the Hall conductivity for charge transport.
Based on this correspondence, we described a procedure to transport momen-
tum along a cylindrical system in the same way that charge is transported
in the classic “flux-threading” argument. We showed that this procedure
can be used to infer the Hall viscosity coefficient from momentum transport,
in agreement with established results, for Landau levels and Dirac–Landau
levels. Finally, we showed that Hall viscosity leads to a dipole moment at
an open boundary, but this term may be safely neglected when computing
bulk transport. The ability to neglect edge effects is important in Chapter 3
where we consider finite lattice models of the quantum Hall effect.

22



Chapter 3

Lattice Models of the
Quantum Hall Effect

3.1 Introduction
Chapter 2 introduced a method—based on directly calculating momentum
transport—to determine the Hall viscosity which is readily adapted to dis-
crete, lattice systems in magnetic fields. Lattice systems have discrete trans-
lation and rotation symmetries, and have an additional length scale a, the
lattice constant. Without continuous rotation symmetry, the viscosity is not
quantized in terms of the density [104]. Continuous translation symmetry is
broken by the lattice so that momentum is not well-defined, but with discrete
translation symmetry, we can consider quasi-momentum transport instead.
Despite these fundamental differences between lattice and continuum sys-
tems, the lattice results converge to the continuum limit as the magnetic
length becomes much longer than the lattice length scale (as the magnetic
field weakens).

3.2 Continuum limit
Our purpose is to consider the lattice models equivalent to the continuum
models studied in Sections 2.4 and 2.5; therefore, we should ensure that our
implementation of strain on the lattice is compatible with that limit. We
might imagine applying strain to a lattice system by displacing the lattice
sites. However, the effective metric of the continuum system is not set by the
lattice length scale alone, but also through the effective mass by the hopping

The material presented in Chapter 3 was previously published in: Thomas I. Tuegel
and Taylor L. Hughes. “Hall viscosity and momentum transport in lattice and continuum
models of the integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92,
165127 (2015). doi: 10.1103/PhysRevB.92.165127. Some figures are reprinted with
minor modifications. Some text and figure captions have been modified. Copyright by the
American Physical Society (APS). Reuse permitted according to APS copyright policies.
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potential, computed as an overlap of atomic wavefunctions in neighboring
potential wells [81]. Distorting the lattice could alter the hopping potential,
so we see no reason to believe a priori that distorting the lattice would leave
the effective mass unchanged. Therefore, we keep the lattice vectors fixed
and approach the implementation of strain in a more abstract way, while
ensuring that the dispersion of the lattice tight-binding model tends to the
continuum limit. The dispersion of the two-dimensional tight-binding model
is

(3.1)ϵ(k) = −2t1 cos(k · a1)− 2t2 cos(k · a2)

where t1 and t2 are the hopping potentials along the lattice vectors a1 and
a2 respectively. In the continuum limit, k ·ai ≪ 1, expansion to lowest order
in k gives

(3.2)ϵ(k) = −2(t1 + t2) + t1(k1a1)
2 + t2(k2a2)

2.

To keep compatibility in the continuum limit, we should ensure that this
expansion matches the quadratic dispersion of free electrons in the continuum
model,

(3.3)ϵ(k) =
h̄2

2m
gabkakb =

h̄2

2m

(
g11k21 + g22k22

)
where gij is the inverse effective metric; neglecting the constant offset of the
lattice model,

(3.4)ti =
h̄2

2m

gii

a2i
.

Implementing strain by allowing ti to vary under the effective metric without
deforming the lattice is compatible with the continuum limit, although the
strain is disconnected from an interpretation based on deformation of the
underlying lattice. We consider the disconnect an appropriate compromise,
however, because the relation between the continuum-limit strain and the lat-
tice deformation depends strongly on the physical details of the system [115].
We remark that the prescription (3.4) also avoids other difficulties related to
distorting the lattice which are discussed in Ref. [115], such as the need to
define a distortion periodic across the Brillouin zone or the definition of a
new conserved momentum-like quantity (the quantum numbers k ·ai already
being necessarily conserved under adiabatic evolution).
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3.3 Models

3.3.1 Hofstadter–Landau levels

The Landau level problem treated in Section 2.4 is the continuum limit of
a tight-binding model due to Hofstadter [50]. The model is a square lattice
(ax = ay = a) tight-binding model on a cylinder with rational flux ϕ = p/q

per plaquette,

(3.5)H =
∑
n,k

−t1c†n+1,kcn,k − t2 cos (ka− 2πϕn)c†n,kcn,k + h.c.

where cn,k annihilates an electron in the with y-wavenumber k on the n-th site
in the x-direction. In the Landau gauge as above, the Hofstadter model does
not retain the fundamental lattice translation symmetry in the x direction,
but it is symmetric under translation by a whole magnetic cell (q unit cells).
On a torus, this symmetry is respected by keeping the size an integer number
of magnetic cells, i.e., Nx = lq for integer l. To preserve the symmetry on
a cylinder, consider cutting the torus by setting the wavefunction to zero
on all the sites at on x coordinate; the cylinder has the same number of
unit cells as the torus, lq, but it has one fewer site, Nx = lq − 1 [48].
The magnetic translation symmetry affects not only the construction of the
lattice, but also the correct scaling of the viscosity (by the lowest Landau
level density). With these commensurate boundary conditions on a cylinder,
the Hofstadter Hamiltonian (3.5) has q nearly flat bands (Hofstadter–Landau
levels) consisting of l − 1 states at each momentum k. In the gaps between
bands are edge states (one mode per gap per k) which connect the bands. For
example, the spectrum with open boundary conditions at q = 20 is shown in
Fig. 3.1.

Now let us explicitly detail how the momentum transport is calculated.
Under the strain parameterization (2.24) and the prescription (3.4) for lattice
models, we have t1 ∝ α2 and t2 ∝ α−2. Therefore, under uniform strain, the
Hofstadter Hamiltonian becomes

(3.6)H =
∑
n,k

−t1α2c†n+1,kcn,k −
t2
α2

cos (ka− 2πϕn)c†n,kcn,k + h.c.

The projected quasi-momentum is

(3.7)⟨pyPR⟩ =
∑
k

νl∑
m=1

h̄k⟨m, k|PR|m, k⟩
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Figure 3.1: The spectrum of the Hofstadter Hamiltonian in Equation (3.6)
with q = 20. The three lowest Landau levels are highlighted to illustrate the
level filling scheme. From: Thomas I. Tuegel and Taylor L. Hughes. “Hall
viscosity and momentum transport in lattice and continuum models of the
integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92,
165127 (2015). doi: 10.1103/PhysRevB.92.165127.
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where PR projects onto the right half of the cylinder:

(3.8)PR =

1
2
Nx∑

n=0

|n⟩⟨n|.

The integersm run over energy eigenstates at a given k from 1 (lowest energy)
to a value depending on the filling. If ν > q/2, then the edge states associated
with each Landau level above the middle of the spectrum are actually below
the flat Landau level, rather than above, so we must take care choosing
which states are filled if the viscosity of those Landau levels is of interest.
The filling scheme for the first few Landau levels is illustrated in Fig. 3.1.
Finally, note that we have omitted the eAy term in the momentum, i.e., we
have computed ⟨pyPR⟩ and not ⟨ΠyPR⟩. As explained in Section 2.6, the
omitted term captures only unimportant edge effects. Although the Hall
viscosity is responsible for these edge effects, they are not related to the bulk
momentum transport, and so we do not include them in our calculation of
the Hall viscosity.

The viscosity can be computed directly from the eigenstates of the Hamil-
tonian (3.6) using Eqs. (2.30) and (3.7). At large q, the magnetic field is
weak, and the magnetic length is much larger than the lattice spacing. In
this regime we expect that the Hall viscosity should approach the continuum
model. In fact, as in Fig. 3.2, we see that it does converge to the continuum
result for the fillings we tested. Biswas [12] also found convergence to the
continuum result in the weak-field limit in Hofstadter–Landau levels by a
different methodology. As one increases the magnetic field, the effects of the
lattice become more prominent. Figure 3.2 also indicates that lattice effects
more strongly affect higher Landau levels because the convergence to the
continuum limit is slower. Eventually, as the magnetic field strengthens, i.e.
as q → 0, the viscosity begins to depend on the lattice scale. From our results
in the continuum we expect that, when divided by the density, the viscosity
should be a constant, independent of ℓB. Instead we find, due to lattice ef-
fects, that the viscosity has contributions that depend on the magnetic and
lattice length scales,

(3.9a)2πℓ2B
h̄

η
(1)
H ≈ 0.2499 +

0.0017√
2π

a

ℓB
+

0.3865

2π

a2

ℓ2B

(3.9b)2πℓ2B
h̄

η
(2)
H ≈ 1.0042 +

0.1513√
2π

a

ℓB
+

4.3204

2π

a2

ℓ2B

27



0.0

0.5

1.0

1.5

2.0

2.5

3.0

 60  120  180  240  300

η H
 / 
ρ

q

ν=1

ν=2

ν=3

Figure 3.2: The Hall viscosity of the lowest Hofstadter Landau levels calcu-
lated by the momentum transport method with Ny = 51. The length of the
system varies as Nx = 2q − 1 to keep commensurate boundaries. The Hall
viscosity of the corresponding continuum Landau levels is shown by a dashed
line for comparison. From: Thomas I. Tuegel and Taylor L. Hughes. “Hall
viscosity and momentum transport in lattice and continuum models of the
integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92,
165127 (2015). doi: 10.1103/PhysRevB.92.165127.

(3.9c)2πℓ2B
h̄

η
(3)
H ≈ 2.2289 +

0.5938√
2π

a

ℓB
+

2.2256

2π

a2

ℓ2B
,

where we have rewritten the q dependence in terms of the relevant length
scales with qa2 = 2πℓ2B. We find that each term in the viscosity switches sign
under B → − B, as expected.

The Hall viscosity of anisotropic ( α ≠ 1 ) Hofstadter–Landau levels is also
readily determined by this method, shown in Figure 3.3. The magnetic field
is fixed at values of q large enough (q = 120, 180) that the Hall viscosities for
the first three Landau levels have (nearly) saturated at the continuum limit.
The anisotropic system has only 180◦-rotation symmetry and it is quasi-1D
for large deviations from α = 1. The Hall viscosity of the Hofstadter–Landau
levels varies as a function of α itself; in comparison, the viscosity of the
continuum Landau level is constant as α is varied. If the system is anisotropic
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Figure 3.3: The Hall viscosity of the lowest Hofstadter Landau levels is
shown at q = 120 (red) and q = 180 (blue) under anisotropic deformation
parameterized by α. For comparison, the Hall viscosity of the correspond-
ing isotropic Landau levels is shown (dashed gray) for filling ν ∈ {1, 2, 3}.
The system is isotropic when α = 1 and the unit cells are elongated in the
y-direction when α > 1. From: Thomas I. Tuegel and Taylor L. Hughes.
“Hall viscosity and momentum transport in lattice and continuum models
of the integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B
92, 165127 (2015). doi: 10.1103/PhysRevB.92.165127.

we would expect the Hall viscosity to have more than one coefficient, for
example η1112H ̸= η1222H or η1122H ̸= 0. The α ↔ α−1 symmetry of the metric
under x↔ y allows us to determine both viscosity coefficients from the figure
by considering α and α−1 simultaneously. The third coefficient η1122H is not
expected to enter the momentum transport calculation, and so unfortunately
cannot be extracted from the figure. Finally, note that the effect of anisotropy
is reduced at larger q because the lattice scale is significantly smaller than
the magnetic length, ℓB ≫ a.
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3.3.2 Lattice Dirac–Landau levels

In Section 3.3.1 we considered a lattice model which has the Landau level
problem as its continuum limit. Now let us consider a lattice regularization of
the Dirac–Landau level problem from Section 2.5. The lattice Dirac insulator
has attracted great interest because of its application to graphene; however,
graphene’s honeycomb lattice presents extra difficulties—there are multiple
Dirac points located away from the Γ-point in the Brillouin zone—so that its
continuum limit is not the simple Dirac–Landau level problem. Instead of
the honeycomb lattice, we consider a simpler model of a Dirac fermion on a
square lattice. As in the square-lattice Hofstadter model, there is rational flux
ϕ = p/q per unit cell and the system is a cylinder periodic in the y-direction.
Under strain parameterization (2.24) and the prescription (3.4), the lattice
Dirac Hamiltonian is

H =
∑
n,k

1

2

[
c†n+1,k

(
iασ1 − σ3

)
cn,k + h.c.

]
+ α−1 sin (ka− 2πϕn)c†n,kσ

2cn,k

+ [2−m− cos (ka− 2πϕn)]c†n,kσ
3cn,k

(3.10)

where cn,k is a two-component annihilation operator. There is a single Dirac
cone at k = (0, 0) (k = (π, π)) when m = 0 (m = 4). The system dimensions
are chosen to preserve magnetic translation symmetry, i.e., the system width
is an integer multiple of q, or Nx = lq−1 for integer l, so that the boundaries
are commensurate [48]. Figure 3.4 shows the Landau levels at m = 0 and
m = 4. The edge states for m = 0 are near k = 0, but the edge states
for m = 4 are near k = π; this difference affects the calculation of the Hall
viscosity below.

The viscosity is calculated by projecting the total momentum onto the
right half of the cylinder, as in Eq. (2.30), and differentiating with respect
to α. The momentum projection is

(3.11)⟨pyPR⟩ =
∑
k

occ.∑
j

h̄k⟨j, k|PR|j, k⟩

where PR projects onto the right half of the cylinder:

(3.12)PR =

1
2
Nx∑

x=0

∑
σ=±1

2

|x, σ⟩⟨x, σ|
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Figure 3.4: The spectrum of the lattice Dirac Hamiltonian in Eq. (3.10) is
shown at m = 0 (top) and m = 4 (below). The n ∈ {0,±1,±2} Dirac
Landau levels are indicated. The highlighted Landau levels are enlarged in
the panels at right. From: Thomas I. Tuegel and Taylor L. Hughes. “Hall
viscosity and momentum transport in lattice and continuum models of the
integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92,
165127 (2015). doi: 10.1103/PhysRevB.92.165127.
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Figure 3.5: The Hall viscosity of the lowest lattice Dirac Landau levels cal-
culated by the momentum transport method. The height of the system is
Ny = 51 and the width varies as Nx = 2q − 1 to keep commensurate bound-
aries. Only the indicated individual Landau levels are filled. For comparison,
the Hall viscosity of the individual continuum Dirac Landau levels is shown
by the dotted gray lines. From: Thomas I. Tuegel and Taylor L. Hughes.
“Hall viscosity and momentum transport in lattice and continuum models
of the integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B
92, 165127 (2015). doi: 10.1103/PhysRevB.92.165127.
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Figure 3.6: The Hall viscosity of the lattice Dirac model is shown with filling
through the indicated Landau levels. The height of the system is Ny = 51

and the width varies as Nx = 2q − 1 to keep commensurate boundaries.
The model is filled from the bottom of the lattice Dirac spectrum. When
filling from the bottom of the spectrum, the number of filled lattice Dirac
Landau levels increases with q (unlike in the ordinary quantum Hall effect);
therefore, a linear term 0.011q has been subtracted from each series. From:
Thomas I. Tuegel and Taylor L. Hughes. “Hall viscosity and momentum
transport in lattice and continuum models of the integer quantum Hall effect
in strong magnetic fields”. Phys. Rev. B 92, 165127 (2015). doi: 10.1103/
PhysRevB.92.165127.
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Figure 3.7: The Hall viscosity of the zeroth lattice Dirac Landau level is
shown at m = 0 (circles) and m = 4 (crosses) over a range of q values.
The height of system is Ny = 51 and the width varies as Nx = 2q − 1

to keep commensurate boundaries. The m = 4 series is plotted twice; the
unshifted plot shows the viscosity when the Brillouin zone is unshifted so
that the Dirac point is at k = ±π and the shifted plot shows the viscosity
when the Brillouin zone has been shifted so that the Dirac point falls at
k = 0. From: Thomas I. Tuegel and Taylor L. Hughes. “Hall viscosity
and momentum transport in lattice and continuum models of the integer
quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92, 165127
(2015). doi: 10.1103/PhysRevB.92.165127.

The integers j run over the occupied energy eigenstates at a given ky. For
most of the cases we consider we only fill the Landau levels near half-filling.
We note that near half-filling the n-th Landau level consists of the states (see
Fig. 3.4)

(3.13a)Nx + nl < j ≤ Nx + (n+ 1)l, for m = 0
(3.13b)Nx + (n− 1)l < j ≤ Nx + nl, for m = 4.

Notice that the 0-th Landau level moves from the bottom of the conduction
band at m = 0 to the top of the valence band at m = 4. This is clearly
shown in Fig. 3.4.

The Hall viscosity of individual lattice Dirac–Landau levels was calculated
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at m = 0 by the momentum transport method in Eq. (2.30) to obtain the
results in Fig. 3.5. The values here represent the viscosity calculations from
individually filling (not successively filling) the n = 0,±1, and ±2 Landau
levels (where n = 0 is referenced to the zeroth Landau level of the Dirac
point, not the bottom of the entire bandwidth). To help illustrate, we have
shown which Landau levels were filled in Fig. 3.4. The lattice calculation
converges to the continuum value in the large-q (weak magnetic field) limit,
i.e. the Hall viscosity of the lattice system approaches the continuum value
in the limit where the magnetic length ℓB is much larger than the spacing
between unit cells. As the magnetic field strength increases, so does the effect
of the lattice, with the viscosity taking on q-dependent terms:

(3.14a)2πℓ2B
h̄

η
(−2)
H ≈ 0.9868 +

0.4276√
2π

a

ℓB
+

12.0267

2π

a2

ℓ2B

(3.14b)2πℓ2B
h̄

η
(−1)
H ≈ 0.5018 +

0.0576√
2π

a

ℓB
+

1.7067

2π

a2

ℓ2B

(3.14c)2πℓ2B
h̄

η
(0)
H ≈ 0.2498 +

0.0045√
2π

a

ℓB
+

0.8290

2π

a2

ℓ2B

(3.14d)2πℓ2B
h̄

η
(1)
H ≈ 0.5025 +

0.0857√
2π

a

ℓB
+

1.3075

2π

a2

ℓ2B

(3.14e)2πℓ2B
h̄

η
(2)
H ≈ 0.9802 +

0.6299√
2π

a

ℓB
+

14.1092

2π

a2

ℓ2B
,

where we have used the relation qa2 = 2πℓ2B. As predicted by the continuum
calculation, the Hall viscosity converges to approximately the same value for
positive and negative Landau levels.

Instead of calculating the Hall viscosity of individual Dirac–Landau lev-
els near the Dirac point, let us now consider filling states from the bottom
of the spectrum up to a mid-gap Fermi level such as might occur in actual
materials; the results are shown in Figure 3.6. It is not clear a priori how
this should compare to the continuum results because such a filling is not
possible in an unregularized continuum Dirac model. In fact, the Hall viscos-
ity scales linearly with q if it is calculated with bands filled from the bottom
of the spectrum because increasing q adds extra bands to the bottom of the
spectrum that must be filled. The continuum Dirac–Landau model, in con-
trast, has an constant, infinite number of filled levels below the Fermi level;
without a regularization scheme, we cannot sum over an infinite number of
negative-energy levels. Obviously the lattice result with a variable number
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of filled bands cannot be directly compared to the continuum model, so we
have subtracted off a linear term 0.011q in Figure 3.6. It is noteworthy that
the difference in the viscosity between filling ν = n and ν = n + 1 matches
the Hall viscosity of the (n+1)-th individual continuum Dirac–Landau level.
Although the Hall viscosity may be regularization-dependent, the difference
in viscosity across a filled Dirac–Landau level seems to retain a universal
character.

The lattice Dirac insulator has massless Dirac points when m = 0 and
m = 4; having already considered the former case, we turn now to the
latter. Figure 3.7 compares the Hall viscosity calculated by the momentum
transport method at m = 0 and m = 4. The naive result for the Hall viscosity
shows a monotonically decreasing function that does not converge for large q.
However, to properly interpret this result, care must be taken to recenter the
Brillouin zone. If m is fixed, but k → k − π, then the momentum transport
calculation exactly recovers the result at m = 0. When the Brillouin zone is
not shifted, the edge states near k = π transport extra momentum leading to
the discrepancy. Generically, when a low-energy Dirac point is shifted away
from k = 0 in the Brillouin zone, there is additional momentum transport
due to simply to the Dirac cone.

3.4 Summary
In Chapter 2, we introduced a procedure to compute the Hall viscosity based
on momentum transport, applied to continuum models. In Chapter 3, we
applied this procedure to compute the Hall viscosity of two lattice models
equivalent to each of the continuum models in the previous chapter. We
addressed the difficulty applying strain to a lattice model while maintaining
equivalence in the continuum limit. In both models, we found convergence
to the continuum Hall viscosity in the limit that the magnetic length scale
is much longer than the lattice length scale, as expected. In the first case
of the Hofstadter model, we also determined that the Hall viscosity coeffi-
cient deviates from its continuum value in an anisotropic system, even in the
continuum limit. Finally, we addressed two peculiar features of the lattice
Dirac–Landau levels: the existence of negative-indexed Landau levels and
the distinct phases at m = 0 and m = 4.
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Chapter 4

Hall Viscosity in Helium-3

4.1 Introduction
The primary obstacle to observing Hall viscosity in the quantum Hall ef-
fect is the difficulty to probe directly the momentum of the two-dimensional
electron gas; however, proposals do exist to measure the Hall viscosity in-
directly [2, 17, 52, 55, 87, 129]. In contrast, superfluid 3He−B provides a
direct probe of momentum transport: although simple fluids usually sup-
port only longitudinal acoustic waves, three-dimensional paired superfluids
such as 3He−B support transverse acoustic waves. Despite early predic-
tions of transverse acoustic waves in 3He−B [65, 80], and early observation
of longitudinal acoustic waves [70, 94], transverse acoustic waves were not
described in detail theoretically [86], or observed [71] until much later. In
a typical experiment the superfluid resides in a cavity with one wall that
acts as a transducer. The collective mode excitations of the superfluid pairs
are largely responsible for supporting the propagation of transverse acoustic
waves in the superfluid. If the (intrinsically time-reversal invariant) super-
fluid is placed under a weak magnetic field, the degeneracy of the collective
mode excitations is broken due to the Zeeman effect. Since the transverse
waves are coupled to the collective modes, the Zeeman effect changes the
relative phase velocity of opposite circular polarization components, i.e., it
induces circular birefringence. For example, if a linearly-polarized wave is
injected into the fluid, then its polarization rotates as it propagates through
3He−B due to the relative phase velocity of each component, a phenomenon
known as the acoustic Faraday effect. This effect can be interpreted as arising
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directly from the Hall viscosity generated by the application of the magnetic
field.

4.2 Helium-3 phenomenology
The superfluid B-phase of 3He is described by the spin-triplet, p-wave pairing
Balian–Werthamer state [46, 72, 86]. The order parameter is a 3× 3 complex
matrix,

(4.1)dij =
∆√
3
Rij(n̂, θ)e

iϕ

parameterized by the self-energy amplitude ∆, the phase ϕ, and the rotation
Rij of the spin by an angle θ around an axis n̂ relative to the orbital angu-
lar momentum [86]. The ground state and collective mode excitations are
eigenstates of the twisted total angular momentum operator,

(4.2)J = L+R−1S.

The states are additionally labeled by their signature under particle-hole sym-
metry; the real part of dij transforms with signature +1, and the imaginary
with signature −1.

The six families of states J = {0, 1, 2}{+,−} comprise 18 states in all. The
J = 0− and J = 1+ states are the Goldstone modes, coupling to longitudinal
zero sound and spin waves respectively [78, 79]. The counterparts of these
modes, J = 0+ and J = 1−, are not relevant to this discussion: these
branches of modes are at, and beyond, the pair-breaking edge and so they
are strongly damped [135]. The real J = 2+ excitations do not couple to
transverse waves in the quasi-classical linear response theory, so we do not
consider them [46, 82, 135]. It is only the J = 2− imaginary squashing modes
that couple to transverse acoustic waves below the pair-breaking frequency,
and are primarily responsible for collision-less transverse sound.

4.3 The acoustic Faraday effect
The Faraday effect is the rotation of a linearly-polarized optical wave prop-
agating through a gyrotropic (magneto-optically active) medium: an ap-
plied magnetic field breaks time-reversal symmetry, creating optical birefrin-
gence between left- and right-hand polarized waves known as circular bire-
fringence [66]. Circular birefringence leads to a phase shift between linear
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polarization components passing through the medium; that phase shift has
the effect of rotating the linear polarization vector around the axis of prop-
agation. The acoustic Faraday effect refers to the analogous rotation of
linearly-polarized transverse acoustic waves. As in the optical Faraday ef-
fect, the rotation of transverse acoustic wave polarization is due to the phase
shift induced by circular birefringence. In this section, we review the prop-
agation of acoustic plane waves and show that their circular birefringence is
a manifestation of Hall viscosity.

4.3.1 Wave equation

We begin by reviewing wave propagation in isotropic viscoelastic media in
three dimensions and go on to include the anisotropic Hall viscosity. Wave
propagation is governed by two equations: the continuity equation

(4.3)∂tρ+ ∂ag
a = 0

where ρ is the mass density and ga the momentum density, and the consti-
tutive equation

(4.4)∂tg
a + ∂bT

ba = 0

where T ab is the stress tensor and a, b = 1, 2, 3. Designating the displacement
field as ua, the momentum density is

(4.5)ga = ρ ∂tu
a.

Throughout we assume linear displacements and linear density variations.
The stress tensor is related to the strain,

(4.6)wab =
1
2
(∂aub + ∂bua),

and the strain rate ∂twab, through the elasticity λabcd and viscosity ηabcd

tensors:
(4.7)T ab = −λabcdwcd − ηabcd∂twcd.

The elasticity and viscosity tensors are each symmetric under exchange of
their last two indices due to using the symmetric strain tensor wcd. In an
isotropic system, they are conventionally parameterized

(4.8a)λabcd = G
(
δacδbd + δadδbc

)
+
(
K − 2

3
G
)
δabδcd

(4.8b)ηabcd = H
(
δacδbd + δadδbc

)
+
(
Ξ− 2

3
H
)
δabδcd
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where G (H) is the shear modulus (viscosity) and K (Ξ) is the bulk modulus
(viscosity).

Now let us choose a plane-wave ansatz for an acoustic wave, i.e., let the
displacement field be a plane wave with wavevector q and frequency ω:

(4.9)u(x, t) = u ei(q·x−ωt).

In three dimensions, we can decompose the polarization vector u using an
oriented triad of real, orthonormal vectors {e1, e2, e3} (the linear polarization
basis) such that e3 is chosen to be the direction of propagation: q = q e3.

Under this ansatz, the density may fluctuate linearly around the background
density ρ0,

(4.10)ρ(x, t) = ρ0 + δρ ei(q·x−ωt).

To linear order, the momentum density is independent of the density fluctu-
ations,

(4.11)g(x, t) = −iω ρ0u(x, t).

The strain tensor and stress tensor are
(4.12a)wab =

i
2
(qaub + qbua)

(4.12b)T ab = −i
(
λabcd − iωηabcd

)
qcud

where we have used the symmetry of the elasticity and viscosity tensors in the
second equation above. Evaluated under this ansatz, the continuity equation

(4.13)−iω δρ+ q ω ρ0u
3 = 0

determines that the density fluctuations

(4.14)δρ = i q ρ0u
3

are proportional to and out-of-phase with the longitudinal displacement; this
justifies our assertion in Eq. (4.11) that the linear momentum density is
independent of the density fluctuations. The constitutive equation is

(4.15)−ρω2ua + q2(λac − iωηac)uc = 0,

where, for brevity, we have designated nine components each of the elasticity
and viscosity tensors as

(4.16)λ3a3c = λac and η3a3c = ηac where a, c ∈ {1, 2, 3}.

Equation (4.15) determines the speed of wave propagation.
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4.3.2 Longitudinal waves

Longitudinal waves have displacement along the direction of propagation,

(4.17)u1 = u2 = 0 and u3 ̸= 0.

According to Eq. (4.10) there are density fluctuations proportional to the
displacement field. Using the constitutive equation (4.15) and the isotropic
elasticity and viscosity tensors (4.8), we find the speed of longitudinal waves
cl(ω) in isotropic media is given by

(4.18)cl(ω)
2 = ρ−1

0

[(
K + 4

3
G
)
− iω

(
Ξ + 4

3
H
)]
.

The real part Re cl(ω)
2 includes the contribution of the bulk modulus, effec-

tively a restoring force against compression. The imaginary part Im cl(ω)
2 is

related to the attenuation of longitudinal waves due to dissipative viscosity
producing a drag force.

4.3.3 Transverse waves

Transverse waves propagate in an elastic medium because the elasticity pro-
vides a restoring force against a strain gradient perpendicular to the direction
of propagation (transverse). Displacement is only transverse to the direction
of propagation, u3 = 0. Following Eq. (4.10), there are no density fluctu-
ations due to transverse waves and we do not expect the bulk modulus or
viscosity to affect the speed of sound. Using the constitutive equation (4.15)
and the isotropic elasticity and viscosity tensors (4.8), we find the speed of
transverse waves ct(ω) in isotropic media is given by

(4.19)ct(ω)
2 = ρ−1

0 (G− iωH).

As above, the elasticity provides a restoring force against the wave displace-
ment; here only the shear modulus G contributes to Re ct(ω)

2. The shear
viscosity H is responsible for a drag force leading to the imaginary (attenu-
ating) term Im ct(ω)

2.

4.3.4 Hall viscosity

The anti-symmetric part of the viscosity is often neglected because it van-
ishes in time-reversal invariant systems and isotropic systems in three di-
mensions [4]. When present, however, the anti-symmetric or Hall viscosity
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leads to a force perpendicular to the strain rate gradient. To highlight the
relationship between Hall viscosity and angular momentum, we may prefer
to think of this as a non-dissipative torque. To see this clearly, we work in
the circular polarization basis, {e+, e−, e3}, where

(4.20)e± = 1√
2
(e1 ± ie2).

This basis has a metric given by

(4.21a)g++ = g−− = e+ · e+ = e− · e− = 0
(4.21b)g+− = g−+ = e+ · e− = e− · e+ = 1

so we must take care when raising and lowering indices. The components of
a 2-index tensor A in the circular basis are related to the linear basis by

(4.22a)A++ = (A−−)
∗
= 1

2
(A11 − A22)− i

2
(A12 + A21)

(4.22b)A+− = (A−+)
∗
= 1

2
(A11 + A22)− i

2
(A12 − A21)

where A may be the (reduced) elasticity λ or viscosity η.
To extend our study to include Hall viscosity, we allow anisotropy along

the direction of propagation e3 to remain relevant to experiments in 3He−B

where a magnetic field is applied along e3. Maintaining rotation symmetry in
the e1– e2 plane preserves the conservation of angular momentum of circularly
polarized waves. The A++ and A−− components of the reduced elasticity
and viscosity are required to vanish, as they violate rotation symmetry by
coupling right-circular and left-circular polarized waves. We also neglect the
dissipative terms Imλ+− and Re η+− because transverse waves in 3He−B

only couple to non-dissipative order parameter fluctuations [86]. Including
the ordinary shear viscosity through the Re η+− coefficient would introduce a
contribution to the constitutive equation out of phase with the other terms,
leading to a damped solution instead of an undamped plane wave. The
combination of rotation symmetry and exclusion of dissipative effects imposes
the constraints

(4.23a)λ12 = λ21 = 0

(4.23b)η11 = η22 = 0.

The only surviving terms contributing to the speed of sound are the shear
modulus,

(4.24)G = 1
2

(
λ11 + λ22

)
and the Hall viscosity,

(4.25)ηH = 1
2

(
η12 − η21

)
.
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The speed c±(ω) of each circular polarization component is given by

(4.26)c±(ω)
2 = ρ−1

0 (G∓ ωηH).

Immediately we see that each component has a different phase velocity: the
fluid exhibits circular birefringence when ηH ̸= 0, i.e., when time-reversal
symmetry is broken. An observation of circular birefringence in transverse
acoustic waves would enable the direct determination of the Hall viscosity
coefficient. We consider this possibility in the context of 3He−B below.

4.4 Zeeman splitting
Circularly-polarized transverse acoustic waves transform under the J = 2

angular momentum representation and carry m = ±1; therefore, to conserve
angular momentum, they may couple only to the subset of the J = 2− mul-
tiplet with m = ±1 [86]. The dispersion relation for waves with frequency ω
and wavevector q is [23, 86]

(4.27)ω2

v2F q
2
= Λ0 + Λ(2−)

ω2

ω2 − ω2
(2−) −

2
5
v2F q

2
,

where vF is the Fermi velocity, Λ0 is the effective quasiparticle restoring force
(which is insensitive to the magnetic field), and Λ(2−) is the coupling to the
J = 2− collective modes. The denominator of the second term depends on
the dispersion relation of the imaginary-squashing collective modes,

(4.28)ω2 = ω2
(2−) +

2
5
v2F q

2,

where ω(2−) is the frequency edge for the J = 2− modes. The sensitivity of
the transverse acoustic waves to the magnetic field is primarily due to the
Zeeman splitting of the J = 2− collective modes that modifies ω(2−). The
Zeeman effect may also be thought of as generating a contribution to the
Hall viscosity that is responsible for acoustic circular birefringence.

In zero magnetic field, the lowest energy, fully degenerate J = 2− modes
have frequency ω(2−) =

√
12
5
∆. The shear modulus due to the J = 2− collec-

tive modes can be determined using Eq. (4.26),

(4.29)ρ−1G(2−) =
Λ(2−)v

2
Fω

2

ω2 − 12
5
∆2 − 2

5
v2F q

2
.
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The quasiparticle contribution to the shear modulus is neglected because
it contains only time-reversal invariant contributions; thus it is insensitive
to the magnetic field and cannot contribute to the Hall viscosity. In the
long-wavelength limit, i.e., near resonance,

(4.30)lim
q →0

ρ−1G(2−) =
Λ(2−)v

2
Fω

2

ω2 − 12
5
∆2

.

Applying a weak magnetic field along the propagation direction breaks the
J = 2− degeneracy by Zeeman splitting:

(4.31)ω(2−) =
√

12
5
∆+m(2−)g(2−)ωL

where g(2−) is the Landé g-factor [114], m(2−) is the angular momentum
quantum number along the field direction, and ωL is the Larmor frequency
of the J = 2− modes given by

(4.32)g(2−)h̄ωL = γBz,

and γ is the effective coupling constant of the collective modes to the mag-
netic field [111]. The dispersion relation (4.27) now differs for each of the
m(2−) = ±1 components,

(4.33)ω2

v2F q
2
= Λ0 + Λ(2−)

ω2

ω2 −
[√

12
5
∆± g(2−)ωL

]2
− 2

5
v2F q

2

.

Consider the limit near resonance in which the magnetic field B is weak
enough to justify expansion to linear order in B, i.e.,

(4.34)g(2−)ωL ≪
√
ω2 − 12

5
∆2 ≪ ∆.

The Hall viscosity under weak magnetic fields and in the long-wavelength
limit is determined by comparison with Eq. (4.26) to find

(4.35)lim
q →0

ηH = −2G(2−)

g(2−)ωL

ω2 − 12
5
∆2

,

neglecting terms of order (ω2 − 12
5
∆2)/ω2. This shows explicitly that the Zee-

man splitting of the J = 2− collective modes may be interpreted as a direct
contribution to the Hall viscosity coefficient and hence affects the transverse
acoustic wave propagation.
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4.5 Effective model of collective modes
A simple effective model of the low-energy superfluid collective modes as an
ensemble of non-interacting bosons suffices to derive a Hall viscosity coeffi-
cient in agreement with the circular birefringence result above. The success
of this model further supports the interpretation of the acoustic Faraday
effect as a Zeeman-induced Hall viscosity.

Consider the collective modes as non-interacting bosons with orbital an-
gular momentum L̂ and spin Ŝ. The orbital angular momentum repre-
sents, roughly, the orbital angular momentum of the quasiparticles making
up the superfluid pairs. At the mean field level, the effective interaction—
experienced by the quasiparticles as they orbit—is perturbed by the strain on
the system; therefore, the orbital angular momentum couples to strain. How-
ever, the spin—an internal degree of freedom—is not coupled to the strain
in this context. Indeed, the Cooper pair has a spatial extent, so its orbital
angular momentum is sensitive to the (effective) spatial metric induced by
the strain. Spin, on the other hand, is the intrinsic angular momentum of a
point-like particle and insensitive to the effective strain metric.

With this assumption, the dynamics of the collective modes are given by
the model Hamiltonian

(4.36)H = H0(Ĵ) + γB · Ĵ+ µ−1wmnL̂mL̂n + 2γwmnBmL̂n,

where µ is the effective pair moment of inertia and γ is the effective pair
coupling to the magnetic field. The symmetrized strain tensor wmn is defined
in Eq. (4.6). The HamiltonianH0(Ĵ) is the zero-field, zero-strain Hamiltonian
for the bosons. With Ĵ given by Eq. (4.2), and knowing that the low-energy
collective modes of 3He−B arise from the L = S = 1 pairs, it suffices to take

(4.37)H0(Ĵ) =
2∑

J=0

J∑
m=−J

h̄ω(J−)|J,m⟩⟨J,m|

with the well-established spectrum of particle-hole antisymmetric collective
modes,

(4.38)ω(0−) = 0, ω(1−) = 2∆, and ω(2−) =
√

12
5
∆.

The spectrum could be chosen to model another system by H0, or to include
particle-hole symmetric modes, and it should apply in more general contexts.
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The strain susceptibility is given by the Kubo formula [14, 64]

(4.39)χabmn = − i

ω

1
√
g

⟨
δT ab

δwmn

⟩
+ lim

ϵ→0+

1

h̄ω+

∫ ∞

0

dt eiω
+t
⟨[
T ab(t), Tmn

]⟩
where the symmetric stress tensor is

(4.40)T ab = − 1
√
g

δH

δwab

=
1
√
g

(
gamgbn + gangbm

)[ 1

2µ
L̂mL̂n + γBmL̂n

]
,

and the effective metric is gmn = δmn+2wmn. The stress tensor is independent
of H0 because the latter is insensitive to strain. At zero strain, this yields

(4.41)T ab
∣∣
w=0

= − 1

2µ

(
L̂aL̂b + L̂bL̂a

)
− γ
(
BaL̂b +BbL̂a

)
.

The variational term of the susceptibility at zero strain depends on the ex-
pectation value of

1
√
g

δT ab

δwmn

∣∣∣∣
w=0

= −T abδmn −
(
δma

[
1

2µ

(
L̂nL̂b + L̂bL̂n

)
+ γ(BnL̂b +BbL̂n)

]
+ [m↔ n] + [a↔ b] + [ma↔ nb]

)
(4.42)

giving the infinite-frequency (contact) contribution to the transport coeffi-
cients; if the zero-field ground state is isotropic in space, then it gives no
contribution to ηH . The commutator term gives the finite-frequency contri-
bution; it vanishes unless the orbital angular momentum L > 0 and time-
reversal symmetry is broken. Evaluation of the commutator term proceeds
in the usual way, by inserting a resolution of the identity

(4.43)1 =
2∑

J=0

J∑
m=−J

|J,m⟩⟨J,m|

between T ab(t) and Tmn. For our effective model of 3He−B collective modes,
the shear modulus is

(4.44)
G(2−) = −1

2
iω
(
χ1313 + χ2323

)
=

1

3

n

h̄

[
h̄2

2µ

]2√
12

5

∆(
ω2 − 12

5
∆2
) + 4

3

h̄2

2µ
n,
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where n is the boson number density. The Hall viscosity coefficient is

(4.45)
ηH = 1

2

(
χ1323 − χ2313

)
= −2

3

n

h̄

[
h̄2

2µ

]2√
12

5

∆(
ω2 − 12

5
∆2
)2 γBz

h̄

where γBz/h̄ = g(2−)ωL. Near resonance, i.e., when ω2 − 12
5
∆2 ≪ ∆2, the

shear modulus is entirely dominated by its divergent term and the Hall vis-
cosity coefficient generated by Zeeman splitting agrees with the prediction
from the previous section,

(4.46)ηH = −2G(2−)

g(2−)ωL

ω2 − 12
5
∆2

.

Therefore, the model supports the conclusion that the Zeeman-split collective
modes induce the Hall viscosity that is responsible for the acoustic Faraday
effect in 3He−B.

4.6 Summary
In Chapter 4 we re-examined the phenomenon of the acoustic Faraday effect
in 3He−B. We showed that Hall viscosity generally leads to circular bire-
fringence of transverse acoustic waves, a result we expect to hold in other
systems where the effect has been or is expected to be observed. The acoustic
Faraday effect is attributed to Zeeman splitting of the 3He−B collective mod-
els; we do not question this explanation, rather we demonstrate that Zeeman
splitting leads to Hall viscosity. We constructed a simple effective model for
the collective modes which has as inputs only well-established phenomeno-
logical features of 3He−B: the angular momentum state and frequency of the
active modes. Coupled to a magnetic field, Zeeman splitting in our simple
model leads to Hall viscosity, justifying our claim.
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Chapter 5

Entanglement

5.1 Introduction
The central object of entanglement spectrum methods is the reduced den-
sity matrix [95, 96] constructed by tracing out a subsystem, also referred to
as making an entanglement cut. If A is a subsystem of S then the reduced
density matrix on A is [95]

(5.1)ρA = TrA ρ

where ρ is the density matrix on S and the trace is carried out over A, the
complement of A in S. The subsystem A is often taken to be half of the total
system, but it proves useful to take other subsystems as well. If OA is an
operator such that suppOA ≤ A, then [95]

(5.2)⟨OA⟩ = TrS ρOA = TrA ρAOA.

Formally, the reduced density matrix may be written as the thermal density
matrix of an entanglement Hamiltonian HA,

(5.3)ρA = Z−1

A
e−H

A , where ZA = TrA e
−H

A .

When the bosonic or fermionic Hamiltonian of the total system is quadratic,
the entanglement Hamiltonian is also quadratic [95],

(5.4)HA =
∑
i

εia
†
iai ,

where the eigenvalues εi are called the entanglement spectrum. The creation
and annihilation operators ai are given by a unitary transformation Q of the
creation and annihilation operators ci or the original system,

(5.5)ai = cjQji and a†i = c†jQji

The unitarity of Q ensures that the ai obey the same commutation or anti-
commutation relation as the ci operators. The single-particle basis defined
by Q forms a convenient basis for computing expectation values on A.

48



5.2 Entanglement spectrum

5.2.1 Correlation function eigenvalues

Peschel [95] explains that the quadratic entanglement HamiltonianH is re-
lated to the single-particle correlation function C on the subsystem A. The
correlation function is given by

(5.6)Cij = TrA ρAc
†
icj where i, j ∈ A

and cj is the fermion annihilation operator at j. (The same is applicable to
bosons, but hereafter we consider only fermions.) Inverting the relations (5.5)
we have

(5.7)Cij = Qim

(
TrA Z

−1

A
e−H

A a†man

)
Qnj.

The trace is diagonal in the ai basis, or

(5.8)Cij =
∑
m

QimQmj

(
TrA Z

−1

A
e−H

Aa†mam

)
with the partition function given by

(5.9)Z−1

A
= TrA e

−H
A =

∏
i

{0,1}∑
⟨
a†iai

⟩ e−εi =
∏
i

(
1 + e−εi

)
.

Therefore, the single-particle correlation function shares its eigenfunctions
with the quadratic entanglement Hamiltonian HA,

(5.10)Cij = Qim

[
1

eεm + 1

]
Qmj

and the eigenvalues ξi of C are [95]

(5.11)ξi =
1

eεi + 1
.

Instead, the entanglement spectrum can be deduced from the spectrum of
C,

(5.12)εi = log
(
ξ−1
i − 1

)
= log

(
1− ξi
ξi

)
.

This expression has the obvious utility that it deals with the single-particle
correlation function rather than the many-body density matrix.
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5.2.2 Correspondence between entanglement spectra

Under an entanglement cut, the density matrix is partitioned into the reduced
density matrices ρA and ρA and an off-diagonal block ρT ,

(5.13)ρ =

(
ρA ρT

ρT ρA

)
.

At zero temperature, ρ is a projector, i.e., ρ2 = ρ giving three conditions on
ρA, ρA, and ρT :

(5.14a)ρTρT = (1− ρA)ρA
(5.14b)ρT ρT = (1− ρA)ρA
(5.14c)ρT = ρT ρA + ρA ρT .

The reduced density matrices are diagonalized by

(5.15a)ρA = UA ΛA UA where ΛA = diag
({
λA,i
})

(5.15b)ρA = UA ΛA UA where ΛA = diag
({
λA,i
})
.

The eigenvalues and eigenvectors of the reduced density matrices are related
to the singular value decomposition [76] of ρT ,

(5.16)ρT = UT ΣT VT where ΣT =

(
diag ({σT,i})

0

)

where we assume (without loss of generality) that dim ρA ≤ dim ρA. The left
(right) singular vectors of ρT are the eigenvectors of ρT ρT (ρT ρT ) respec-
tively, so that

(5.17)UT = UA and VT = UA,

and the singular values are the square-roots of the eigenvalues of the same,

(5.18)σT,i =
√(

1− λA,i
)
λA,i =

√(
1− λA,i

)
λA,i.

There are at least (dim ρA − dim ρA) eigenvectors of ρA with singular value
σT = 0 (due to the dimensions of ΣT ) and therefore with λA ∈ {0, 1}. Equa-
tion (5.14c) shows that ρT maps eigenvectors uA of ρA into eigenvectors of
ρA,

(5.19)(1− λA)(ρT uA) = ρA(ρT uA)

which justifies the correspondence between λA and λA in Eq. (5.18).
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5.3 Global symmetries
One motivation to study the reduced density matrix is to understand the
topology of the subsystem state in A. Topological invariants are computed as
a trace on A, so it is crucial that the global symmetry protecting the state be
respected by the reduced density matrix if A is to be in a symmetry-protected
topological state. In general, the topological indices of a symmetry-protected
topological state are invariant under any cut (real-space or otherwise) which
respects the protecting symmetries [56]; as a specific example relevant to our
cases, consider a global (on-site) symmetry g of the Hamiltonian,

(5.20)[H, g]± = 0

where g is either a commuting [·, ·]+ or an anti-commuting [·, ·]− symmetry.
The topology is defined with respect to the filling of single-particle states at
E < 0 or the spectral projector P , i.e., the single-particle density matrix.
The flat-band Hamiltonian 1− 2P is also symmetric under g,

(5.21)[1− 2P, g]± = 0

because g either maps each single-particle eigenstate onto itself (commuting)
or onto a partner with the opposite occupancy under P (anti-commuting).
Under a partition of the system S into disjoint subsystems A and A, the flat-
band Hamiltonian can be written as a sum of terms with support on A or A,
plus a term mapping each subsystem into the other:

(5.22)1− 2P = (1A − 2PA) + (1A − 2PA)− 2PAA

If the partition respects g, i.e., it does not cut through any unit cell, then
each term is individually symmetric under g:

(5.23a)[1A − 2PA, g]± = 0

(5.23b)[1A − 2PA, g]± = 0

(5.23c)[PAA, g]± = 0.

PA is the reduced density matrix on A; although it generally represents a
thermal state, we can flatten 1A−2PA into a quantum reduced density matrix
(as the Hamiltonian H was flattened) without breaking the global symmetry
g. The flattened, reduced density matrix is used to compute topological
indices.
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5.4 Entropy and mutual information
The relative entropy of two densities ρA and ρB is [91]

(5.24)S(ρA|ρB) =

Tr ρA(log ρA − log ρB) if supp ρA ≤ supp ρB

∞ otherwise.

An important special case is the von Neumann entropy,

(5.25)S(ρA) = −S(ρA|1) = −TrA ρA log ρA

measuring correlation across the boundary of A. The entanglement entropy is
readily computed in terms of the single-particle correlation spectrum (5.11),

(5.26)S(ρA) = −
∑
i

ξi log ξi + (1− ξi) log (1− ξi).

Recall that the correlation spectrum takes values ξi ∈ [0, 1]; states at ξi = 0

and ξi = 1 do not contribute to the entanglement entropy, which is dominated
by states at ξi = 1/2. A state at ξi = 1/2 has equal weight in A and A, i.e.,
it is maximally correlated across the boundary of A. The correspondence
in eigenvalues when λA ̸∈ {0, 1} implies that the regions have the same
entanglement entropy S(ρA) = S(ρA).

The mutual information of regions A and B is the entropy of their joint
state relative to their marginal states, [139]

(5.27)I(A,B) = S(ρAB|ρA ⊗ ρB) = S(ρA) + S(ρB)− S(ρAB).

Whereas the entanglement entropy measures correlation of a region with
its complement, the mutual information measures correlation between two
disjoint regions. Figure 5.1 explains this interpretation graphically:

• S(ρA) (S(ρB)) measures the correlation between A and A (B and B),
and

• S(ρAB) measures the correlation between A ∪ B and A ∩ B, but

• S(ρAB) does not include any correlations between A and B because

(5.28)A ∩ (A ∩ B) = B ∩ (A ∩ B) = ∅,

so that
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S(ρA) S(ρB)
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Figure 5.1: Entanglement entropy and mutual information of regions A and
B in S. The entanglement entropy S(ρi) measures correlation between a
region i and its complement. The mutual information I(i, j) measures corre-
lation across the boundary between two regions i and j, discounting common
correlations with their shared environment.

• the mutual information is the excess correlation between A and B over
the correlations with their common environment.

Equation (5.27) is also valid when A and B are not disjoint, but the interpre-
tation becomes murkier. In practice, we will not be troubled by interpreting
the mutual information of overlapping regions; rather, we use the mutual in-
formation to measure the degree of hybridization of topologically-protected
states in disjoint regions.

The mutual information I(A : B) bounds correlation functions between
regions A and B [139]. The relative entropy gives the mutual information,

(5.29)I(A,B) = S(ρAB|ρA ⊗ ρB)

which is bounded below by

(5.30)S(ρ|σ) ≥ 1

2
∥ρ− σ∥2.

The mutual information is thus bounded

(5.31)I(A,B) ≥ 1

2
∥ρAB − ρA ⊗ ρB∥

2.
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Next consider the connected correlation function

(5.32)C(A,B) = ⟨A ⊗ B⟩ − ⟨A⟩⟨B⟩

where A and B are operators with support on A and B respectively. In terms
of the densities,

(5.33)C(A,B) = Tr ρAB(A⊗ B)− Tr (ρA ⊗ ρB)(A⊗ B)
= Tr (ρAB − ρA ⊗ ρB)(A⊗ B).

Therefore, the correlation function is bounded above by

(5.34)C(A,B) ≤ ∥ρAB − ρA ⊗ ρB∥ ∥A ⊗ B∥.

The norm of the direct product is bounded by ∥A ⊗ B∥ ≤ ∥A∥ ∥B∥ so that

(5.35)C(A,B)
∥A∥ ∥B∥

≤ ∥ρAB − ρA ⊗ ρB∥.

The bound (5.31) on the mutual information imples [139]

(5.36)C(A,B)2 ≤ 2 I(A,B) ∥A∥2 ∥B∥2.

5.5 Summary
In Chapter 5 we introduced the entanglement spectrum of the reduced den-
sity matrix and described how both are determined by the single-particle
correlation function for non-interacting systems. We use the entanglement
spectrum in Chapter 6 to compute geometric response in the quantum Hall
effect. In Chapter 7, we use the reduced density matrix to classify symmetry-
protected topological phases; for the classification, it is important that the
reduced density matrix respect the same global symmetries as the Hamilto-
nian as demonstrated in Section 5.3. We also use the mutual information
between subsystems (Section 5.4) as a diagnostic of coupling which may de-
stroy an embedded topological phase.
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Chapter 6

Momentum Polarization

6.1 Introduction
The momentum polarization is calculated in a cylindrical geometry from the
expectation value of the translation operator T (in the periodic direction) ap-
plied only to one half of the cylinder. The expectation value can be computed
using the reduced density matrix [130],

(6.1)τ ≡
⟨
TL
⟩
= TrL ρLT .

Tu, Zhang, and Qi [130] show that τ can be easily calculated for free-fermion
systems using the entanglement spectrum to extract the topological spin h

and central charge c of the conformal field theory at the edge of a topologi-
cal phase. Consider that, in the long-wavelength limit, the reduced density
matrix of a cylinder cut in half can be written in terms of the Hamiltonians
HLl and HLr of the respective conformal edge theories of the left and right
edges of the left half-cylinder only [130]:

(6.2)ρL = ρLl ⊗ ρLr = Z−1e−βlHLl−βrHLr .

The relevant half-cylinder translation operator is

(6.3)TL = exp

[
i(Pl + Pr)

∆y

R

]
,

where ∆y is the distance translated (which we take to be a multiple of the
lattice constant for lattice systems), R is the radius of the cylinder, and Pl

and Pr are the generators of translations (momentum operators) of the left

The material presented in Chapter 6 was previously published in: Thomas I. Tuegel
and Taylor L. Hughes. “Hall viscosity and momentum transport in lattice and continuum
models of the integer quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92,
165127 (2015). doi: 10.1103/PhysRevB.92.165127. Some figures are reprinted with
modifications. Some text and captions have been modified. Copyright by the American
Physical Society (APS). Reuse permitted according to APS copyright policies.
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and right edge theories on the half-cylinder, respectively [41, 130]. The left
edge is far from the right half and uncorrelated so that βl → ∞; therefore only
the ground state of the left edge contributes. The ground state expectation
value of Pl is h − c/24 where h is the topological spin mod 1 and c is the
chiral central charge mod 24 [41]. The contribution of the left edge is [130]

(6.4)TrLl ρLl exp

[
iPl

∆y

R

]
= exp

[
i
∆y

R

(
h− c

24

)]
On the other hand, βr takes a finite value because the right edge is entangled
with the right half-cylinder. In general, the right edge gives a non-universal
contribution [130]

(6.5)TrLr ρLr exp

[
iPr

∆y

R

]
= exp [−2πRα].

The contributions of the left and right edge scale differently with R, so we
can extract the central charge and topological spin.

For free fermions, the momentum polarization phase τ is easily calculated
in terms of the entanglement spectrum for a cylinder by the formula [130]

(6.6)τ =
∏
n,k

1

2

[(
1 + eik∆y

)
+
(
1− eik∆y

)
tanh 1

2
εn(k)

]
where

∏
n,k is a product over the bands n and y-wavenumbers k; εn(k) is

the entanglement eigenvalue of the state in band n with momentum h̄k. The
entanglement spectrum can be expressed in terms of the eigenvalues ξ(L)n (k)

of the single particle correlation function (5.12),

(6.7)εn(k) = log
1− ξ

(L)
n (k)

ξ
(L)
n (k)

.

The correlation function is C(L)(k) =
⟨
c†(i,a)(k)c(j,b)(k)

⟩
where k are the

wavenumbers in the periodic direction, i, j run-over the lattice sites on the
left half of the cylinder, and a, b run-over all of the onsite degrees of freedom.
C(L)(k) projects states onto the left half of the cylinder, but we it is more
useful to compute this formula in terms of the projections onto the right half,
ξn(k) = 1− ξ

(L)
n (k). Using these identities, it is convenient to rewrite (6.6) as

(6.8)τ =
∏
n,k

1

2

[(
1 + eik∆y

)
+
(
1− eik∆y

)
(2ξn(k)− 1)

]
.
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In a remarkable extension of this work, Zaletel, Mong, and Pollmann
[142] show that in quantum Hall states, the Hall viscosity gives an imaginary
contribution to the non-universal coefficient α,

(6.9)τ = exp

[
i
∆y

R

(
h− c

24

)
− 2πiR∆y

ηH
h̄

+ . . .

]
;

additional non-universal terms with different R-scaling have been elided.
They consider a full twist such that ∆y = 2πR, but the result carries over for
smaller ∆y as well. Thus, the viscosity and central charge can be extracted
from a fit of 2πRArg τ ; the former from the quadratic coefficient, the latter
from the constant coefficient.

We can understand how the momentum polarization phase encodes the
viscosity by considering the action of the shear strain generators on the
ground state. Here, we show that the Hall viscosity can be extracted by
comparing the momentum polarization calculated with a real-space cut to
the phase taken with an orbital cut. We note that Park and Haldane [92]
identified two distinct contributions to the Hall viscosity, and the contri-
bution which interests us here is due to changing the shape of the Landau
orbitals under shear strain. The second contribution, the guiding center Hall
viscosity, comes from the electron correlations and is absent in the integer
quantum Hall models we study here. We review how the momentum po-
larization phase calculated with a real-space cut encodes both Hall viscosity
contributions. Although we consider only the integer effect, the guiding cen-
ter Hall viscosity also has a super-extensive term due to the non-zero net
momentum in each half of the system [92]. We show that this background
can be subtracted by calculating the momentum polarization phase with an
orbital cut and comparing the two results.

6.2 Adiabatic response
Before continuing to calculate the momentum polarization phase, let us re-
mind ourselves of the origin of the adiabatic curvature under strain. Suppose
we are given a Hamiltonian H taking parameters in a space X and we are
tasked to calculate the transport coefficients measuring the response of H
to variation in X. Along a path in parameter space X(t) ∈ X, the time-
dependent Hamiltonian H(t) = dH (Ẋ) governs the dynamical evolution of
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the system according to the Schrödinger equation,

(6.10)ih̄ ∂tψ(t) = H(t)ψ(t).

The computation of transport coefficients would seem simply to be a matter
of selecting an appropriate path X(t), but we are plagued by one difficulty:
in general, the time-dependent Schrödinger equation admits no stationary
solution. The Adiabatic Theorem allows us to salvage this approach in the
limit dH (Ẋ) → 0, wherein ψ(t) is an eigenstate of H(t) at every instant [13,
61]. The price to pay is that H(t) does not generate the adiabatic evolution
of the system, i.e., the propagator U(t, t0) generated by H(t),

(6.11)ih̄ ∂tU(t, t0) = H(t)U(t, t0)

does not respect the projector P (t). Let UAd(t, t0) be the adiabatic propaga-
tor that respects the projector,

(6.12)UAd(t, t0)P (t0) = P (t)UAd(t, t0)

and its complement Q(t) = 1 − P (t) in the same way. Avron, Seiler, and
Yaffe [6] showed that the adiabatic Hamiltonian

(6.13)HAd = H + ih̄ [∂tP, P ]

generates an adiabatic propagator which approximates as closely as possible
the dynamical evolution according to H in the sense that

(6.14)P (t)U(t, t0)P (t0) = UAd(t, t0)P (t0) +O((t− t0)
2)

and likewise for Q(t). Response functions for the adiabatically-evolving state
are computed using HAd in place of the dynamical Hamiltonian H. The
response function is given by the expectation value [5, 7]

(6.15)⟨∂jHAd⟩ = ⟨∂jE⟩+ ih̄ ⟨[∂iP, ∂jP ]⟩Ẋ i

where partial derivatives are taken in X. The commutator is the adiabatic
curvature,

(6.16)⟨[∂iP, ∂jP ]⟩ = ⟨∂iψ|∂jψ⟩ − ⟨∂jψ|∂iψ⟩ = −2i Im ⟨∂iψ|∂jψ⟩.

Adiabatic responses such as the Hall conductivity or viscosity can be com-
puted using the adiabatic curvature and Eq. (6.15) [7, 73].
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6.3 Hall viscosity
Evaluating the momentum polarization phase reveals that the strain genera-
tors lead to a non-universal Hall viscosity contribution. This section closely
follows Park and Haldane [92]. First, let us decompose our physical coordi-
nate R into a guiding center coordinate r̃ and an orbital coordinate r:

(6.17)R = r̃+ r.

There is a metric Gµν associated with the physical coordinate R, as well as
metrics g̃µν and gµν associated with each coordinate r̃ and r, respectively.
Let ȷ̃µν(R) be the strain generators in g̃µν acting at R; likewise let jµν(R)

be the strain generators associated with gµν . The strain generators obey at
each point the commutation relations [92]

(6.18a)
[
jµν , jαβ

]
= − i

2

(
ϵµαjνβ + ϵµβjνα + µ↔ ν

)
(6.18b)

[
ȷ̃µν , ȷ̃αβ

]
= − i

2

(
ϵµαȷ̃νβ + ϵµβ ȷ̃να + µ↔ ν

)
(6.18c)

[
ȷ̃µν , jαβ

]
= 0,

where we have suppressed the dependence on R. The strain generator in the
physical coordinate is

(6.19)Jµν(R) = ȷ̃µν(R) + jµν(R)

so that the unitary operator implementing strain on quantum states is [14,
92]

(6.20)W (λ) = exp

[
i

∫
d2R λµν(R)Jµν(R)

]
where λµν is a symmetric tensor parametrizing the strain.

The strain operator (6.20) can be written as the product of strain trans-
formations on each coordinate because the strain generators on different co-
ordinates commute (6.18):

(6.21a)W (λ) = w(λ)w̃(λ)

(6.21b)w(λ) = exp

[
i

∫
d2R λµν(R)jµν(R)

]
(6.21c)w̃(λ) = exp

[
i

∫
d2R λµν(R)ȷ̃µν(R)

]
.

To first order in λµν , the variation in the metric under strain is [92]

(6.22)δGµν(R) = −ϵαβGµα(R)λβν(R) + µ↔ ν.
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In our particular case, translating half of the cylinder induces strain at the
center,

(6.23)λµν(x, y) = δ(x)∆y

(
1 0

0 0

)
.

The momentum polarization expectation value τ (6.8) is the ground state
expectation value ⟨W (λ)⟩ under this strain field.

Before we proceed to compute the required expectation values and find
the momentum polarization phase, let us see how the Hall viscosity enters the
calculation. We can represent the viscosity tensor in terms of the adiabatic
curvature (6.16) of the ground state under shear strain [7, 92]:

(6.24)Hµναβ(R) = 2h̄ Im

⟨
dΨ(λ)

dλµν(R)

∣∣∣∣ dΨ(λ)

dλαβ(R)

⟩
= −ih̄⟨Ψ|

[
Jµν(R), Jαβ(R)

]
|Ψ⟩.

where |Ψ(λ)⟩ = W (λ)|Ψ⟩. Because the strain generator Jµν is the sum of
orbital and guiding center strain generators, we conclude that the viscosity
also has contributions due to each strain generator, which we separately
denote

(6.25a)ηµναβ = −ih̄⟨Ψ|
[
jµν , jαβ

]
|Ψ⟩

(6.25b)η̃µναβ = −ih̄⟨Ψ|
[
ȷ̃µν , ȷ̃αβ

]
|Ψ⟩

Now, using the strain field (6.23), we find

(6.26)τRES = ⟨Ψ|W (λ)|Ψ⟩ = ⟨Ψ|w̃(λ)|Ψ⟩⟨Ψ|w(λ)|Ψ⟩,

where τRES is the momentum polarization phase τ (6.8) computed with the
real-space entanglement spectrum. The expectation value of w̃ is the mo-
mentum polarization phase computed with the orbital entanglement spec-
trum [92], while the expectation value of w is

(6.27)
⟨Ψ|w(λ)|Ψ⟩ = ⟨Ψ| exp

[
i

∫
d2R λµν(R)jµν(R)

]
|Ψ⟩

= ⟨Ψ| exp
[
i

∫
d2R δ(x)∆y jxx(R)

]
|Ψ⟩.

The expectation value can be moved inside the exponential because jxx at
different points commute,

(6.28)⟨Ψ|w(λ)|Ψ⟩ = exp

[
i

∫
d2R δ(x)∆y ⟨Ψ|jxx(R)|Ψ⟩

]
.
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Evaluating the integral, assuming a uniform ground state expectation value,
gives

(6.29)⟨Ψ|w(λ)|Ψ⟩ = exp [2πiR∆y ⟨Ψ|jxx|Ψ⟩],

where we have kept terms only to first order in ∆y. Using the strain generator
commutation relations (6.18), we substitute

(6.30)⟨Ψ|jxx|Ψ⟩ = i⟨Ψ|[jxx, jxy]|Ψ⟩ = −1

h̄
ηxxxy = −1

h̄
ηH

to find
(6.31)⟨Ψ|w(λ)|Ψ⟩ = exp

[
−2πi

h̄
R∆y ηH

]
.

Returning to the expression for the momentum polarization phase (6.26),

(6.32)τRES = τOES exp

[
−2πi

h̄
R∆y ηH

]
,

where τOES = ⟨Ψ|w̃(λ)|Ψ⟩ is the momentum polarization phase computed
with the orbital entanglement spectrum. Hence, we can determine that an
alternate form of the (orbital contribution to the) Hall viscosity is given by

(6.33)ηH = − h̄

2π R∆y
Arg

τRES

τOES

for systems in uniform magnetic fields.

6.4 Models

6.4.1 Landau and Dirac–Landau levels

The Hall viscosity can be determined (6.33) by computing the momentum
polarization phases τRES and τOES,

(6.34a)τRES =
∏
n,k

1

2

[(
1 + eik∆y

)
+
(
1− eik∆y

)
(2Cn(k)− 1)

]
(6.34b)τOES =

∏
n

∏
k>0

eik∆y.

We take
∏

n to span the occupied Landau levels. The correlation function
Cn(k) (2.43b) is tabulated for small n (2.44) in Chapter 2. The Hall viscosity
is extracted from the momentum polarization phases by isolating the term
quadratic in R (6.33). The result is shown in the lower panel of Fig. 6.1,
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which shows that the calculation converges when L > 2
√
2πℓB. This is the

same criterion as for the convergence of the momentum transport calculation,
shown again in the top panel of Fig. 6.1: each half of the cylinder must be
wider than a single wavefunction. The Hall viscosity of Dirac–Landau levels
can be expressed in terms of the Landau level Hall viscosity determined by
this calculation, as shown in Sec. 2.5.2.

6.4.2 Hofstadter model

In Sec. 3.3.1, we calculated the Hall viscosity of the Hofstadter–Landau levels
numerically using the momentum transport method. Now let us compare
those results to the result of the momentum polarization method. We use
the correlation function to compute (6.8) the momentum polarization phases,

(6.35a)τRES =
∏
m,k

1

2

[(
1 + eik∆y

)
+
(
1− eik∆y

)(
2⟨PR⟩(m,ky)

− 1
)]

(6.35b)τOES =
∏
m,k

1

2

[(
1 + eik∆y

)
+
(
1− eik∆y

)(
2Θ(⟨x⟩(m,k))− 1

)]
,

where Θ is the Heaviside step function and ⟨A⟩(m,ky)
denotes the expectation

value of A in the state |m, ky⟩. In a lattice model, ∆y must be an integer in
units of the lattice constant. The resulting viscosity calculation is shown in
Fig. 6.2. The Hall viscosity obtained for the first three Landau levels agrees
with the continuum value in the weak field limit. Where the calculation
converges, i.e., q ≳ 20, it agrees qualitatively with the momentum transport
method, although the momentum polarization calculation appears to deviate
less from the continuum Hall viscosity at small q.

6.4.3 Lattice Dirac model

The Hall viscosity of the lattice Dirac model was also calculated by the
momentum polarization method (6.33) using the correlation function (6.8)
to compute τRES and τOES,

(6.36a)τRES =
∏
j,k

1

2

[(
1 + eik∆y

)
+
(
1− eik∆y

)(
2⟨PR⟩(j,k) − 1

)]
(6.36b)τOES =

∏
j,k

1

2

[(
1 + eik∆y

)
+
(
1− eik∆y

)(
2Θ(⟨x⟩(j,ky))− 1

)]
,
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Figure 6.1: The Hall viscosity (ηH) of the lowest Landau levels calculated
by the momentum transport method (above, from Figure 2.2) and by the
momentum polarization method (below). The calculation converges when
Lx > 2

√
2πℓB, i.e., when each half of the cylinder is wider than a single

wavefunction. The Hall viscosity is given in units of h̄ρ0 where ρ0 = 1/2πℓ2B
is the electron density of the lowest Landau level. From: Thomas I. Tuegel
and Taylor L. Hughes. “Hall viscosity and momentum transport in lattice
and continuum models of the integer quantum Hall effect in strong magnetic
fields”. Phys. Rev. B 92, 165127 (2015). doi: 10.1103/PhysRevB.92.
165127.
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Figure 6.2: The Hall viscosity of the lowest Hofstadter Landau levels cal-
culated by the momentum polarization method. The length of the system
varies as Nx = 2q − 1 to keep commensurate boundaries. The Hall viscosity
of the corresponding continuum Landau levels is shown by a dashed line for
comparison. From: Thomas I. Tuegel and Taylor L. Hughes. “Hall viscos-
ity and momentum transport in lattice and continuum models of the integer
quantum Hall effect in strong magnetic fields”. Phys. Rev. B 92, 165127
(2015). doi: 10.1103/PhysRevB.92.165127.

64

https://doi.org/10.1103/PhysRevB.92.165127


0.0

0.2

0.4

0.6

0.8

1.0

1.2

 50  100  150  200  250

n=-2

n=-1

n=0

n=1

n=2

η
H
 /

 ρ

q

Figure 6.3: The Hall viscosity of the lowest lattice Dirac Landau levels cal-
culated by the momentum polarization method. The length of the system
varies as Nx = 2q − 1 to keep commensurate boundaries. In each case, only
the indicated individual Landau levels are filled. Missing points indicate
a convergence failure in the fitting to extract the Hall viscosity. From:
Thomas I. Tuegel and Taylor L. Hughes. “Hall viscosity and momentum
transport in lattice and continuum models of the integer quantum Hall ef-
fect in strong magnetic fields”. Phys. Rev. B 92, 165127 (2015). doi:
10.1103/PhysRevB.92.165127.
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where Θ is the Heaviside step function and ⟨A⟩(m,k) denotes the expectation
value of A in the state |m, k⟩. As with any lattice model, ∆y must be an
integer in units of the lattice constant. The Hall viscosity obtained this
way agrees with the momentum transport calculation, showing the same
convergence to the continuum value of ηH at large q (Fig. 6.3). Note that
although both methods show a deviation from the continuum Hall viscosity
at small q, the momentum polarization method shows a smaller deviation and
with opposite sign. Points are missing from these figures where the fitting
required for the momentum polarization method has failed. The momentum
polarization method was only considered for calculating the Hall viscosity
with individual Landau levels filled; we did not consider filling from the
bottom of the spectrum because the momentum polarization method is only
sensitive to the momentum mod 2π, so it is difficult to obtain convergence
when momentum on the right half-cylinder is large.

6.5 Summary
In Chapter 6 we describe a method to compute the Hall viscosity coefficient
using the entanglement spectrum by comparing orbital and real-space entan-
glement cuts. We compared this method to the momentum transport method
developed in Chapter 2 and found the same results. We also applied the mo-
mentum polarization method to the lattice models in Chapter 3; while the
results are qualitatively similar, there are unexplained discrepancies between
the methods.
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Chapter 7

Embedded Topological
Insulators

7.1 Introduction
A composite system constructed from two free-fermion insulators of the same
symmetry class and dimensionality is classified by the sum of topological
invariants—even when the systems are coupled or disorder is present—if the
bulk gap remains open and the common symmetry is unbroken [33, 63, 116,
125]. Herein we extend this classification to allow that the constituent sys-
tems are of different dimensionality. We focus on the case of a topological
system embedded in a trivial system of higher dimension, which we term an
embedded TI. By allowing for arrays of more than two constituent systems,
we find that this classification already encompasses the weak and antiferro-
magnetic TIs.

7.2 Disentangling transformation

7.2.1 Topological invariants

In general, the topological invariants of a free-fermion system are computed
using its single-particle spectral projector P . For a system with lattice trans-
lation symmetry, we can be more specific; given a single-particle Hamiltonian
H, we construct the Bloch Hamiltonian at quasi-momentum k in the Bril-
louin zone,

(7.1)H(k) = ⟨k|H|k⟩

which has eigenvectors {|un(k)⟩} (the periodic Bloch functions) and eigen-
vectors {En(k)} (the band energies). Eigenvectors of H are of the form
|un(k)⟩⊗ |k⟩. Using the Bloch functions, we can define the spectral projector
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onto Bloch states over the Brillouin zone

(7.2)P (k) =
∑

En(k)<EF

|un(k)⟩⟨un(k)|

where EF is the Fermi energy. Computing invariants of the system amounts
to computing homotopy invariants of the smooth vector bundle over the
Brillouin zone defined by P (k) [19, 116]; which invariants are appropriate
to compute depends on the dimensionality and global symmetries of the
system [63, 99, 109, 113]. The projector P (k) acts on Bloch states, but we
can also construct the projector P onto the entire Hilbert space,

(7.3)P =

∫
BZ

dk

|C⋆|
P (k)⊗ |k⟩⟨k|

where the integral is normalized by the reciprocal unit cell volume |C⋆|. Us-
ing the projector P enables other computation schemes—such as real-space
formulas [83]—that do not necessarily rely on translation invariance. The
projector P also defines the flat-band Hamiltonian,

(7.4)Hflat = 1− 2P or H(k)flat = 1− 2P (k)

which is, with EF = 0, homotopic to the original Hamiltonian.
The remarkable feature of symmetry-protected topological phases is that

their invariants are protected under continuous deformations of the system
that do not close the bulk energy gap or break the protecting symmetry. For
a projector P there is an equivalence class [P ] of homotopic projectors; if
c(P ) is the topological index for P , then c([P ]) = c(P ). c(·) takes values
in an Abelian group, either Z, Z2, or direct products thereof for weak SPT
phases [33, 63, 121]. Let us consider two systems M and N with projectors
PM and PN respectively. If dimM = dimN and the systems respect the same
global symmetries, then a decoupled, composite system M ⊗ N has as its
projector PM ⊕ PN so that its classification is

(7.5)c(PM ⊕ PN) = c([PM]) + c([PN]).

If M and N are coupled so that the projector is PMN ̸= PM⊕PN, but the bulk
gap remains open and the coupling does not spoil the protecting symmetry,
then the classification does not change,

(7.6)c(PMN) = c([PM ⊕ PN]) = c([PM]) + c([PN]), PMN ∈ [PM ⊕ PN].
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M
N

(a) (b)

Topologically
protected surface

modes

Physical Cut

Figure 7.1: Examples of composite systems with dimN < dimM, (a) a closed
system and (b) a system where M has been cleaved to expose topological
surface states bound on N. From: Thomas I. Tuegel, Victor Chua, and
Taylor L. Hughes. “Embedded Topological Insulators” (2018). arXiv: 1802.
06790. Credit: Victor Chua.

If now we allow dimM ̸= dimN, then Eq. (7.5) is invalid: what could it
possibly mean to apply the same classifier c(·) to two projectors PM and PN

which do not belong to the same classification? Although Eq. (7.5) does not
apply, the composite system does retain a signature of the topology of its
components: Consider the case when c(PM) = 0 and take dimN < dimM as
in Fig. 7.1; assuming no coupling between M and N, a physical cut through
M and N certainly leaves topological states on the surface of M localized at N.
When the systems are coupled, the result is less clear. We expect (perhaps
naively) that if the coupling does not spoil the protecting symmetry, then
the surface states survive as long as the bulk gap remains open. In the next
section, we make this intuition precise by disentangling the coupled system.

7.2.2 Disentangled projectors

To disentangle M from N, we begin by making an entanglement cut between
the two components. The entanglement cut leads to the single-particle re-
duced density matrices,

(7.7)ρN = TrM PMN and ρM = TrN PMN.

If the entanglement spectrum {ξi} of ρN is gapped at ξ = 1
2
, then we can

form the entanglement projector

(7.8)ΠN =
∑
ξi>

1
2

|ξi⟩⟨ξi|.
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If the spectrum of ρN is gapped, the spectrum of ρM is also gapped (5.18) so
that we can construct ΠM. The gap in the entanglement spectrum falls at
ξ = 1

2
because this correlation eigenvalue corresponds to the Fermi (entangle-

ment) energy in the Fermi-Dirac distribution for ξ. Coupling M to N causes
the two to become entangled, i.e., the entanglement entropy is non-zero:

(7.9)S(ρM) = S(ρN) > 0.

The entanglement-spectral projectors Π□ have no entanglement entropy;
hence we refer to ΠM and ΠN as the disentangled projectors and to the
construction procedure as disentangling. The entanglement cut is made to
preserve the global symmetries, so we can compute the topological indices
c(ΠN) and c(ΠM).

The disentangled projectors are significant because they are adiabatically
connected to the respective decoupled projectors if the bulk gap remains
open,

(7.10)ΠM ∈ [PM] ΠN ∈ [PN]

so that c(ΠM) = c(PM) and c(ΠN) = c(PN), i.e., each system retains the
signature of its component topology. That the disentangled projectors reflect
the decoupled topology of each subsystem follows from the continuity of the
projector: Consider the single particle spectral projector of the decoupled
system, PM⊕N; in the form of a matrix, it is diagonal, given by

(7.11)PM⊕N =

(
PM

PN

)
.

The entanglement spectrum is gapped because the systems are uncoupled.
Suppose that the systems are coupled so that the spectral projector is no
longer diagonal, but given by

(7.12)PMN =

(
ΠM ΠMN

Π†
MN

ΠN

)
.

If the coupling does not break the protecting symmetry or close the bulk
energy gap, then PMN is a continuous deformation of PM⊕N. Each block of PMN

must therefore be a continuous deformation, or ΠM ∈ [PM] and ΠN ∈ [PN].

Although we have explicitly discussed the case that c(ΠM) = 0, the dis-
entangling procedure applies equally to cases where M is non-trivial. We can
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also consider a system with many regions of interest, which we can succes-
sively disentangle so that in general a system S =

⊔N
i Ri composed of N

disjoint subsystems Ri is classified by the direct product of indices,

(7.13)c(
{
Ri

}
) =

N⊗
i

c(ΠRi
) =

(
c(ΠR1

), c(ΠR2
), . . . , c(ΠRN

)
)
.

A nontrivial composite index does not guarantee the existence of topologi-
cal states on a particular surface; we must consider, for example, which—if
any—of the component systems intersects the cut. In the presence of multiple
topological components, surface states are also subject to finite size effects:
correlations between components are generally exponentially suppressed in
an insulator, but nearby surface states may yet couple and open a gap—
albeit a suppressed gap. Finite size effects also compromise the integrity of
surface states in ordinary topological insulators—consider that the definition
of the projector (7.3) is only valid in the thermodynamic limit—so we do not
consider this a flaw in the composite index. The mutual information quanti-
fies the correlation between two components; in the limit I(Ri,Rj) → 0, the
components Ri and Rj are independent with surface states that do not couple
together. We will consider the mutual information again in Section 7.3.2.

7.3 Isolated embedded TIs

7.3.1 Topological wires

One of the simplest realizations of an embedded TI is a chiral symmetric wire
embedded in a trivial two-dimensional insulator. Chiral symmetry is asso-
ciated with a Hamiltonian that respects the symmetry of a bipartite lattice
by coupling only opposite sublattices. Let S be the chirality operator with
eigenvalues ±1 on each respective sublattice; the system has chiral symme-
try if (HS + SH) = 0. The only topological insulators in one dimension fall
into the chiral-symmetric AIII, BDI, (both carrying a Z invariant) and CII
(carrying a 2Z invariant) classes. For simplicity, we use wires in the BDI
class having the Bloch Hamiltonian

(7.14)HBDI(kx) = σ1 t1 sin kx + σ2(t2 − t1 cos kx)
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t1 t2

+1 −1

Figure 7.2: A two-orbital model of a class BDI chiral-symmetric wire. The
unit cell is indicated by the light, shaded rectangle. The subsites have chiral-
ity +1 (solid blue circle) and −1 (open green circle). The intercell hopping is
it1 (directed solid black line) and the intracell hopping is it2 (directed dashed
black line).

which has eigenvalues and eigenvectors En(kx) and |un(kx)⟩ respectively; the
Hamiltonian and Bloch functions are taken in the periodic gauge, i.e.,

(7.15a)H(kx + 2π) = H(kx)
(7.15b)|un(kx + 2π)⟩ = |un(kx)⟩

so that the winding number ν below is quantized [131]. The Hamiltonian has
particle-hole symmetry realized as P = K (where K is complex conjugation),
time-reversal symmetry realized as T = Kσ3, and chiral symmetry S = σ3.
A representative real-space schematic of the model is shown in Fig. 7.2. The
topological invariant ν ∈ Z is given by

(7.16)ν =

∫
dkx
2π

∑
n

⟨un(kx)|iS ∂kx|un(kx)⟩

where
∑

n is the sum over all Bloch bands. Each Bloch band has a chiral
partner with opposite energy, so the sum may be taken over only occupied
Bloch bands instead,

(7.17)ν =

∫
dkx
π

En<0∑
n

⟨un(kx)|iS ∂kx|un(kx)⟩.

The Hamiltonian in Eq. (7.14) has a topological phase with ν = 1 when
|t1|> |t2| and a trivial phase with ν = 0 when |t1|< |t2|.

The one-dimensional class BDI wire can be extended into two dimensions
by stacking wires in an array. Chiral symmetry requires the unit cell be
enlarged as indicated and the chirality operator alternates sign between wires,
S = σ3 ⊗ σ3. The Bloch Hamiltonian is

(7.18)H2(kx, ky) = 1⊗HBDI(kx) +
[
σ1(t3 cos ky + t4) + σ2 t3 sin ky

]
⊗ 1.
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+1 −1

−1 +1

it1 it2

t4

t3

Figure 7.3: An array of two class BDI wires. The unit cell is indicated by the
light, shaded rectangle. The subsites have chirality +1 (solid) and −1 (open).
The subsite colors are used only to visually distinguish the two wires. The
horizontal hopping potentials are it1 (inter-cell, directed solid black line) and
it2 (intra-cell, directed dashed black line). The inter-layer hopping potentials
are t3 (inter-cell, undirected dashed black line) and t4 (intra-cell, undirected
solid black line).

Each wire is made trivial by choosing |t1|< |t2| as described above. The
wires are weakly coupled with dimerized inter-layer hopping to prevent for-
mation of a strong or weak TI in the y-direction, i.e., |t4|< |t3|< |t1|. With
no topological states on any surface, the bulk model is trivial under every
classification. A topological wire can be embedded into the real-space cor-
responding to (7.18) by replacing one trivial wire with a topological wire,
i.e., choosing new hopping potentials |t′1|> |t′2| for one wire, shown schemat-
ically in Fig. 7.4. Exact diagonalization of the real-space system with open
boundaries shows (Fig. 7.5) zero modes localized on the wire at the surface.
The entanglement spectrum of the system with closed boundaries (Fig. 7.6)
is gapped and the disentangled projector of the embedded TI has ν = 1.
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TW

Figure 7.4: Schematic of an embedded topological wire (dark red line) in
two dimensions. The impurity layer is a class BDI wire with |t′1|> |t′2| sur-
rounded by a trivial bulk insulator. Topological zero modes are bound on
the embedded TI at the surface. From: Thomas I. Tuegel, Victor Chua,
and Taylor L. Hughes. “Embedded Topological Insulators” (2018). arXiv:
1802.06790. Credit: Victor Chua.

(a) (b)

Figure 7.5: (a) Energy spectrum of the system with open boundaries, ob-
tained by exact diagonalization, showing the topological zero modes. (b)
The zero modes are localized on the embedded TI (dashed line). The sys-
tem has dimensions Lx = Ly = 36. The bulk insulator has parameters
(t1, t2) = (0.5, 1.0) and (t3, t4) = (0.1, 0.1). The embedded topological wire
has parameters (t′1, t

′
2) = (1.0, 0.5). From: Thomas I. Tuegel, Victor Chua,

and Taylor L. Hughes. “Embedded Topological Insulators” (2018). arXiv:
1802.06790. Credit: Victor Chua.
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Figure 7.6: The entanglement spectrum of a closed, two-dimensional system
with a single embedded topological wire. The topological invariant of the dis-
entangled bands is ν = 1, as anticipated by the presence of topological zero
modes in the system with open boundaries. The bulk insulator has param-
eters (t1, t2) = (0.5, 1.0) and (t3, t4) = (0.1, 0.1). The embedded topological
wire has parameters (t′1, t

′
2) = (1.0, 0.5). From: Thomas I. Tuegel, Victor

Chua, and Taylor L. Hughes. “Embedded Topological Insulators” (2018).
arXiv: 1802.06790. Credit: Victor Chua.

7.3.2 Chern insulators

In three dimensions, an embedded TI can be realized as a two-dimensional
Chern insulator with Ch1 = 1 embedded into a trivial bulk comprised of a
stack of Chern insulators in the trivial phase. The two-dimensional Chern
insulator breaks time-reversal, particle-hole, and chiral symmetries and so
falls into class A with a Z-valued invariant. A simple two-orbital Chern
insulator has the Bloch Hamiltonian

(7.19)HA(kx, ky) = σ1 sin kx + σ2 sin ky + σ3(2−m− cos kx − cos ky)

with topological invariant Ch1 determined by m,

(7.20)Ch1 =



0 m < 0

+1 0 < m < 2

−1 2 < m < 4

0 m > 4.

The three-dimensional bulk stack of insulators has Bloch Hamiltonian
(7.21)H3(k) = HA(kx, ky) + 1 2δz cos kz
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Figure 7.7: Schematic diagram of a Chern insulator (red) embedded in a
trivial three-dimensional bulk. Chiral edge currents (arrows) appear on open
boundaries in the x- and y-directions. From: Thomas I. Tuegel, Victor
Chua, and Taylor L. Hughes. “Embedded Topological Insulators” (2018).
arXiv: 1802.06790. Credit: Victor Chua.

where we set m < 0 in HA to trivialize the layers. The bulk three-dimensional
model is trivial under all classifications. A single Chern insulator is embedded
by transforming the Bloch Hamiltonian into real-space and picking out one
layer (Fig. 7.7) to replace m with m′, setting 0 < m′ < 2. For small δz, e.g.,
|δz|< min(|m|, |m′|), the composite system remains gapped and therefore
adiabatically connected to the decoupled limit (δz = 0). Chiral edge modes
appear on an open boundary in the y-direction (Fig. 7.8) that are localized
on the impurity layer (Fig. 7.9). The entanglement spectrum of the closed
system is gapped (Fig. 7.10) and the disentangled bands have a topological
invariant Ch1 = 1.

By embedding a pair of Chern insulators, we can construct an example
to demonstate that two embedded TIs with quantized topological invariants
of disentangled projectors may be trivial overall. Consider embedding two
Chern insulators in two different phases with 0 < m′ < 2 (Ch1 = +1) and
2 < m′′ < 4 (Ch1 = −1), shown schematically in Fig. 7.11. Considered as a
two-dimensional band insulator, the system is topologically trivial, but the
embedded layers have chiral edge states with opposite dispersion shown in
Fig. 7.12 crossing E = 0 at kx = 0, π. Consequently, the surface is gapless as
long as the bulk gap does not close.

Instead of embedding two Chern insulators with different parameters, we
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Figure 7.8: Energy spectrum of an embedded Chern insulator in a trivial
three-dimensional bulk. Two-dimensional bands (thin blue lines) localize
near the embedded layer whereas three-dimensional bands (thick blue lines)
permeate the bulk. Topological edge modes (red) appear on open boundaries
in the y-direction. The system is infinite in the x-direction, but finite size
Ly = Lz = 20 in the y- and z-directions. The y-direction has open bound-
aries, while the x- and z-directions have periodic boundary conditions. The
trivial bulk has m = −0.5, the embedded layer has m′ = 0.5, and the inter-
layer hopping potential is δz = 0.1. From: Thomas I. Tuegel, Victor Chua,
and Taylor L. Hughes. “Embedded Topological Insulators” (2018). arXiv:
1802.06790. Credit: Victor Chua.
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Figure 7.9: The zero modes are localized on the embedded Chern insulator
(dashed red line). The system has dimensions Ly = Lz = 48 with fixed
kx = 0. The y-direction has open boundaries, while the x- and z-directions
have periodic boundary conditions. The trivial bulk has m = −0.5, the em-
bedded layer has m′ = 0.5, and the inter-layer hopping potential is δz = 0.1.
From: Thomas I. Tuegel, Victor Chua, and Taylor L. Hughes. “Embedded
Topological Insulators” (2018). arXiv: 1802.06790. Credit: Victor Chua.
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Figure 7.10: The entanglement spectrum of a closed, three-dimensional sys-
tem with a single embedded topological Chern insulator. The topological
invariant of the disentangled bands is Ch1 = 1, as anticipated by the pres-
ence of topological surface states in the system with open boundaries. The
system has Lz = 20 layers, where the trivial bulk has m = −0.5, the em-
bedded layer has m′ = 0.5, and the inter-layer hopping potential is δz = 0.1.
From: Thomas I. Tuegel, Victor Chua, and Taylor L. Hughes. “Embedded
Topological Insulators” (2018). arXiv: 1802.06790. Credit: Victor Chua.
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Figure 7.11: Schematic of two embedded Chern insulators in distinct phases.
The lower (red) and upper (blue) impurity layers are Chern insulators of
opposite topological invariants Ch1 = ±1 with m = m′ and m = m′′ re-
spectively. dz denotes the number of trivial layers between embedded layers.
From: Thomas I. Tuegel, Victor Chua, and Taylor L. Hughes. “Embedded
Topological Insulators” (2018). arXiv: 1802.06790. Credit: Victor Chua.

can embed a Ch1 = +1 insulator and its time-reversal partner, depicted in
Fig. 7.13(a). Each embedded layer has a gapped entanglement spectrum
as shown in Fig. 7.13(b) and the composite index (7.13) is well defined,
although the system is topologically trivial as a two-dimensional band insu-
lator. When the layers are decoupled, the surface states must be localized
to each embedded layer and so remain gapless as in Fig. 7.14(b). When the
layers are coupled, however, the topological surface states are gapped as seen
in Fig. 7.14(a). Figure 7.14(c) shows that the surface gap closes quickly as
the layers are separated; we recover the topological surface states when the
layers are sufficiently separated. The opening of the surface gap is indicated
in the non-zero mutual information in Fig. 7.13(c). The mutual information
of the embedded pair decays exponentially in Fig. 7.13(d) with the separation
between embedded layers, as anticipated for a band insulator. Figure 7.15
illustrates the three contributions to the mutual information. The mutual in-
formation is computed without a boundary present, i.e., in periodic boundary
conditions; the data needed to predict the surface mode coupling is already
present in the bulk system.
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Figure 7.12: Spectrum of two embedded Chern insulators in distinct phases.
Gapless topological edge modes localized on their respective layer (dashed
red lines) cross at kx = 0, π. The crystal has Lz = 20 layers with periodic
boundary conditions and dz = 4 layers between embedded TIs. There are
open boundary conditions in the y-direction with size Ly = 20. The trivial
layers have m = −2 and the Ch1 = ±1 layers have m′ = 1 and m′′ = 3 re-
spectively. The inter-layer hopping potential is δz = 0.8. From: Thomas I.
Tuegel, Victor Chua, and Taylor L. Hughes. “Embedded Topological Insu-
lators” (2018). arXiv: 1802.06790. Credit: Victor Chua.
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(a) (b)

(c) (d)

Figure 7.13: Mutual information measures of embedded time-reversal pair of
Chern insulators. (a) Schematic of two embedded Chern insulators related
by time-reversal. (b) The entanglement spectrum of region A is gapped,
even at dz = 0. The lower entanglement band has Chern number Ch1 =

+1. (c) The mutual information band structure I(A,B)(k) between the two
embedded layers at dz = 0. (d) The total mutual information I(A,B) decays
exponentially as the layers are separated. The trivial layers have m = −2

and the non-trivial layers have m′ = 1. The inter-layer hopping potential is
δz = 0.4. The system is finite with Lz = 24 layers and periodic boundary
conditions in the x- and y-direction. From: Thomas I. Tuegel, Victor Chua,
and Taylor L. Hughes. “Embedded Topological Insulators” (2018). arXiv:
1802.06790. Credit: Victor Chua.
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(a)

(b) (c)

Figure 7.14: Energy spectra of embedded time-reversal pair of Chern insu-
lators with edge states (red dashed lines) crossing at kx = 0. (a) The edge
states are gapped when dz = 0 and δz = 0.4. (b) When the embedded layers
are separated at dz = 8 and δz = 0.4, the edge states are nearly gapless.
(c) The spectral gap at kx = 0 closes quickly as dz increases. The limit
of machine precision is shown at δz = 0. The trivial layers have m = −2

and the embedded non-trivial layers have m′ = 1. The system is finite with
Ly = Lz = 20 with periodic boundary conditions in the z-direction, but an
open boundary in the y-direction. From: Thomas I. Tuegel, Victor Chua,
and Taylor L. Hughes. “Embedded Topological Insulators” (2018). arXiv:
1802.06790. Credit: Victor Chua.
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(a) (b)

(c) (d)

Figure 7.15: The mutual information band structure I(A,B)(k) comprises
three contributions: (a) the entanglement entropy of both regions S(ρAB)(k)
and (b) the entanglement entropy of each region S(ρA)(k) and (c) S(ρB)(k),
i.e., (d) I(A,B)(k) = S(ρA)(k) + S(ρB)(k) − S(ρAB)(k). From: Thomas I.
Tuegel, Victor Chua, and Taylor L. Hughes. “Embedded Topological Insu-
lators” (2018). arXiv: 1802.06790. Credit: Victor Chua.
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7.4 Embedded TI crystals
A weak TI can be treated as a crystal of embedded TIs where the layers of the
weak TI are the embedded systems. The composite topological index (7.13) is
a sequence of indices which repeat due to lattice translation invariance. The
composite index can be summarized by an index for each lattice vector [36].
Any transverse cut through the components leads to surface states, thus
accounting for the modes on certain surfaces of the weak TI. Edge dislocations
can be treated as additional embedded TIs, accounting for the modes bound
at those defects [125].

An antiferromagnetic TI (AFTI) is another case of an embedded TI crys-
tal. The AFTI breaks time-reversal symmetry, but is symmetric under the
magnetic space group generated by the combination of time-reversal T and
a half-lattice-vector translation T1/2, S = T T1/2 [29, 84, 117]. An AFTI can
arise when antiferromagnetic order is imposed on a three-dimensional strong
TI protected by time-reversal symmetry or when stacking two-dimensional
topological insulators with alternating Chern numbers. Surfaces that do not
break the magnetic space group symmetry S are gapless; the zero modes
are protected by Kramers-like degeneracy in the plane with zero momentum
along the half-lattice-vector translation T1/2. The AFTI can be regarded as
a crystal of embedded TIs where the composite index (7.13) is a periodic
sequence of indices where the sum of indices in a single unit cell is zero.
The magnetic space group symmetry is essential for the protection of the
topological surface states because the topological subsystems are not well
isolated.

7.5 Defects
The classification of embedded TIs predicts new robust topological modes at
defects in certain bulk-trivial systems. For example, in crystals where the
trivial unit cell hosts topological subunits, crystal defects such as stacking
faults and partial dislocations can leave remnant embedded TI states. A
simple realization of this example is a stack of alternating Chern insulators,
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shown in Fig. 7.16(a), with the Hamiltonian

H(k) =
(
σ3 ⊗ σ1

)
sin kx+

(
1⊗ σ2

)
sin ky+

(
1⊗ σ3

)
[2−m1 − cos kx − cos ky]

+
(
σ1 ⊗ 1

)
[γz + δz cos kz]−

(
σ3 ⊗ σ3

)
m2

(7.22)

Each unit cell contains two Chern insulator layers which are time-reversal
partners. The model parameters m1 and m2 control the m-parameter of
the individual Chern insulators. The interlayer hopping is controlled by γz

(intra-unit cell hopping) and δz (inter-unit cell hopping). The model is not
a strong or weak TI, and while it is similar to the antiferromagnetic TI,
the hopping potentials between Ch1 = ±1 layers are chosen to break the
antiferromagnetic symmetry; broken inversion symmetry also ensures it is
not a mirror-symmetric crystalline TI. The layers share a symmetry and di-
mensionality, so the bulk topological index vanishes by Eq. (7.6); however,
the model has a non-trivial classification by Eq. (7.13). Stacking faults in
the trivial system, shown in Fig. 7.16(c), host protected topological modes in
open boundary conditions localized at the defect, seen in Fig. 7.16(d). Partial
dislocation defects, such as Fig. 7.16(e), also host topological surface states
seen in Fig. 7.16(f). Both types of defect are realized in a real-space model by
inverse-Fourier transforming the Hamiltonian (7.22) in the stacking direction
(z) and one other direction in the plane of the Chern insulator layers (y);
periodic boundary conditions are maintained in the z and x directions. In
the pristine crystal, the topological substructure is hidden because the alter-
nating layers carry opposite topological modes which couple together to open
the surface gap. Stacking faults and partial dislocations reveal the topologi-
cal substructure because the defect spatially separates the alternating layers
so that one set of surface states is uncompensated.

7.6 Summary
In Chapter 7 we developed a classification of composite symmetry-protected
topological systems based on disentangled projectors. We classify compo-
nents based on the topological indices of disentangleable subsystems. We
introduced embedded topological insulators and showed that our method
correctly classifies embedded TIs in two and three dimensions. Our com-
posite topological index also generalizes the description of weak TIs and
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(a) (b)

(c) (d)

(e) (f)

Figure 7.16: (a) Schematic of alternating stacked Chern insulators, with in-
dices given by the table (b). (c) Schematic of a stacking fault defect and (d)
energy spectrum under open boundary conditions, using parameters m1 = 1,
m2 = −0.1, γz = 0.05, and δz = 0.5. (e) Schematic of a partial dislocation
defect and (f) energy spectrum under open boundary conditions, using pa-
rameters m1 = 1, m2 = 0, γz = 0.5, and δz = 0.25. The energy spectra show
the presence of topological surface states which are localized at the respective
defects. The parameters are defined in Eq. (7.22). From: Thomas I. Tuegel,
Victor Chua, and Taylor L. Hughes. “Embedded Topological Insulators”
(2018). arXiv: 1802.06790. Credit: Victor Chua.
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antiferromagnetic TIs. Finally, we showed that our classification reveals the
possibility of bulk-trivial systems to carry topological modes bound at certain
defects.
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Chapter 8

Conclusion

We began with a review of the geometric response of the quantum Hall effect;
by understanding that response in relation to the electromagnetic response,
we developed and demonstrated a method to compute the Hall viscosity coef-
ficient based on momentum transport. We applied the momentum transport
method to lattice models of the quantum Hall effect, finding general agree-
ment with continuum models, but deviation when the magnetic length scale
is comparable to the lattice scale. Using our new understanding of Hall vis-
cosity in terms of momentum transport, we reinterpreted the observation of
the acoustic Faraday effect in superfluid 3He−B to show that Hall viscosity
leads to circular birefringence of transverse acoustic waves. In Chapter 5,
we turned our attention to the reduced density matrix and methods based
on the entanglement spectrum. We explored a method to compute the Hall
viscosity from the entanglement spectrum and found it comparable to our
previous results in continuum and lattice systems. Then we pursued a dif-
ferent direction based on the entanglement spectrum, finally developing a
classification of composite topological systems, particularly embedded topo-
logical insulators.

Our results for the Hall viscosity of lattice models of the quantum Hall
effect leave some questions unanswered. There remains some discrepancy be-
tween the momentum-transport and momentum-polarization results which is
not explained. The regime of interest, where the magnetic length is compa-
rable to the lattice size, may not be experimentally accessible, although it
may be possible to impose a periodic potential to create an artificial lattice,
if not in a two-dimensional electron gas then perhaps in a photonic analog.

We are excited about the observation of Hall viscosity in 3He−B. An
experiment that simultaneously measures the zero-field speed of sound with
the acoustic Faraday effect could precisely quantify the Hall viscosity coef-
ficient. The acoustic Faraday effect has also been predicted or observed for
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other systems such as crystalline Tb3Ga5O12 [123, 124] and superconductor
vortex lattices [27, 28, 118]. We suggest that these systems are also promising
avenues for future experimental investigations of the Hall viscosity.

Our classification of composite topological systems yields several direc-
tions for future work. We have not addressed how disorder affects the em-
bedded phases, although our classification method still applies to that case.
The classification also suggests that defects in layered antiferromagnetic ma-
terials may host embedded TIs. One promising candidate are the Sn−X

(tin-halides) where topological states are predicted to coexist with antiferro-
magnetic order [89]. Antiferromagnetic TIs may also support embedded TIs
if the magnetic group symmetry is broken.
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