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Abstract

The bound eigenstates of an electron inside a pair of quantum dots embed-

ded on an infinite quantum wire are examined using the method of particular

solutions. The eigenstates of a two-electron system in the same structure are

examined perturbatively using wavefunction expansions for the one-electron

eigenstates. The stability of the two-electron eigenstates is evaluated and com-

pared with other theoretical results. It is found that stable bound states in the

continuum exist for two electrons confined to this geometry.
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1 Introduction

Quantum mechanics postulates that particles, such as electrons, exist not only as

particles, but as waves. These waves represent the probability of the particle’s ex-

istence at a particular point. A quantum wire can act as a guide for the electron’s

probability wave, constraining it to propagate in one dimension only. The introduc-

tion of a cavity–a region where it is allowed to propagate in two dimensions–to the

wire causes the wave to build up, corresponding to a high probability of finding the

electron inside the cavity. The trapped electron’s wavefunction eventually decays,

slowly increasing the probability that the electron will escape.

The strange picture of the electron as a wave becomes even more bizarre when a

second cavity is introduced further down the wire. As the probability wave slowly

dissipates from the first cavity through the wire, it encounters the second cavity, where

is begins again to build up and gradually decay. If the separation between the cavities

is a particular value, the decaying waves from both cavities interfere constructively

between the cavities and destructively elsewhere. This corresponds to a very high

probability of finding the electron trapped somewhere between the cavities and a

very low probability of finding it anywhere else. These states are called bound states

in the continuum because the electrons are trapped, even though they have energy

states in the band of states which would normally allow them to escape along the

wire.

Interest in two-dimensional quantum mechanics has peaked recently due in no

small part to the development within the last two decades of fabrication techniques

for semiconductor quantum wires, for example by deposition [10] or lithography [7].

It has also been shown that some quantum wire geometries have analogous microwave

waveguide configurations [4]. These waveguide geometries are known to exhibit un-

intuitive behaviors which have not been investigated until relatively recently.

Previous work in this area by Ordonez et al. for a similar geometry suggests the
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Figure 1: The quantum dot pair with relevant dimensions and coordinate origin
labeled.
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existence of bound states in the continuum for a single electron in this structure [8].

The work of Sadreev and Babushkina suggests that the existence of such bound states

guarantee the existence of similar bound states for two electrons [9]; they consider

the effect of the Coulomb interaction on the stability of two electron bound states

in the continuum in general quantum dot structures using the Anderson model. The

aim of this work, in part, is to confirm this finding for two electrons in this particular

geometry.

2 Theory

Geometry The dimensions of the quantum dot structure are shown in Figure 1;

note that the dimensions are normalized to the width of the wire. As shown in

Figure 2, the wavefunction is modeled by one expansion in each lead and by the sum of

four expansions in the center; the details of the expansions follow the discussion of the

Helmholtz equation. The conditions that the wavefunction be zero on the boundary

and continuously differentiable on an arbitrary boundary between expansion regions

(indicated by the grey, dashed line in each lead) are imposed.
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Figure 2: The quantum dot pair with coordinate origins and angular measurement
references indicated.
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The corner expansions were chosen to coincide with those corners having interior

angle θ 6= π
β

for some integer β, which are known to cause singularities with other

expansion schemes. The reference angles for measuring the azimuthal coordinate are

indicated in Figure 2. The branch cuts,

θ1 ∈ [0, 2π)

θ2 ∈ [0, 2π)

θ3 ∈
(
− π

2
,
3π

2

]
θ4 ∈ [0, 2π)

are chosen so that the introduced discontinuities fall outside the area of interest.

Helmholtz Equation The length units in the wire are normalized for convenience

so the wire is of unit width. The time-independent free-particle Schrödinger equation

becomes

− ~2

2m∗A2
∇2Φ = E ′′Φ (1)
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where A is the width of the wire in the original units, m∗ is the effective mass of the

electron, Φ is the single-electron wavefunction, and E ′′ is the eigenvalue. The form of

the Helmholtz equation, (
∇2 + k2

)
Φ = 0 (2)

is recovered, where k2 = 2m∗A2E~−2.

Lead Expansions Applying separation of variables,

Φ (x, y) = Φx (x) Φy (y) (3)

to the partial differential equation (2) renders the ordinary differential equations

1

Φy

∂2Φy

∂y2
= −ω2 (4)

1

Φx

∂2Φx

∂x2
= ω2 − k2 (5)

where ω is the constant of separation. These equations permit obvious solutions:

equation (4) is solved by

Φy = sin (ωy) (6)

where the choice of ω = jπ satisfies the boundary conditions in the wire leads, and

equation (5) has the solution

Φx = e−αjx (7)

where α2
j = j2π2 − k2. Therefore the solution to the Helmholtz equation, away from

the embedded dots, is modeled in the right lead by

ΦR =
∑
j

aj sin (jπyR)e−αjxR (8)
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and in the left by

ΦL =
∑
j

bj sin (jπyL)e−αjxL . (9)

Corner Expansions To avoid singularity, the wavefunction in the central region

is expanded in polar coordinates around each singular corner. Applying separation

of variables,

Φ = Φr (r) Φθ (θ) (10)

and the substitution u = kr to the partial differential equation (2) renders the ordi-

nary differential equations

u

Φr

∂

∂u

(
u
∂Φr

∂u

)
= ω2 − u2 (11)

1

Φθ

∂2Φθ

∂θ2
= −ω2. (12)

This yields the solution

Φθ = sin (jβθ) (13)

where β = 2
3

so that ω = jβ and Φθ satisfies the condition that Φ = 0 at the

boundaries adjacent to the chosen corner. We also recognize that Equation (11) is

solved by the ordinary Bessel function of the first kind, so that

Φr = Jjβ (kr) . (14)

Therefore, the solution around corner i is given by

Φi =
∑
j

ci,jJjβ (kri) sin (jβθi). (15)
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Boundary Conditions The boundary conditions, in detail, are:

4∑
i=1

Φi (x, 0) = 0 ∀ ± x ∈ [0, L] (16)

4∑
i=1

Φi (x, 1) = 0 ∀ ± x ∈ [0, D] ∪ [D +B,L] (17)

4∑
i=1

Φi (x,C) = 0 ∀ ± x ∈ [D,D +B] (18)

4∑
i=1

Φi (x, y) = 0 ∀ ± x ∈ {D,D +B} , y ∈ [1, C] . (19)

A finite number of points along these boundaries are selected and encoded in matrix

form so that

AB (k)


~a

~b

~c

 = ~0, (20)

where each row of AB (k) corresponds to a boundary point and each entry therein

to a wavefunction expansion term; the vectors ~a, ~b, and ~c contain the expansion

coefficients. The continuity conditions are:

ΦL (x, y) + ΦR (x, y)−
4∑
i=1

Φi (x, y) = 0 ∀ ± x = L, y ∈ [0, 1] (21)

∂ΦL

∂x
(x, y) +

∂ΦR

∂x
(x, y)−

4∑
i=1

∂Φi

∂x
(x, y) = 0 ∀ ± x = L, y ∈ [0, 1] , (22)

which can be arranged in matrix form as with the boundary conditions so that

AC (k)


~a

~b

~c

 = ~0. (23)
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Observe that the matrices AB (k) and AC (k) are functions of k because their elements

are wavefunction expansion terms.

Method of Particular Solutions Typically, the method of particular solutions

would employ the boundary and continuity condition matrices in Equations (20)

and (23) directly to find wavefunction expansion coefficients satisfying the boundary

conditions; with large matrices this has the limitation of frequently selecting the

spurious solution Φ = 0. To ensure that Φ 6= 0 somewhere, Betcke and Trefethen [3]

introduce the matrix AI such that

AI (k)


~a

~b

~c

 =


Φ (x1, y1)

Φ (x2, y2)

. . .

 (24)

for some points (xi, yi) in the interior of the dots. They then perform the QR factor-

ization so that

A (k) ~C =


AB (k)

AC (k)

AI (k)



~a

~b

~c

 = Q (k)R (k) ~C = Q (k) ~D (k) =


QB (k)

QC (k)

QI (k)

 ~D (k) =


~0

~0

~?


(25)

where Q (k) is an orthogonal matrix and R (k) is a right-triangular matrix. Note that

the vector ~D (k) has yet to be determined; in fact, it is not yet known for which values

of k a nonzero vector ~D (k) even exists.

Betcke and Trefethen proceed to show that all solutions to the boundary value

problem QB (k)

QC (k)

 ~D (k) = ~0 (26)
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automatically satisfy the condition that

QI (k) ~D (k) 6= ~0 (27)

or, that Φ is nonzero somewhere [3]. Consider a unit vector ṽ where

∥∥∥∥∥∥∥
QB (k)

QC (k)

 ṽ
∥∥∥∥∥∥∥ = σ (k) . (28)

If ũ = Q (k) ṽ, then by the orthogonality of the matrix Q (k),

∥∥∥∥ũ∥∥∥∥2 = 1. However, it

is also the case that

∥∥∥∥ũ∥∥∥∥2 =

∥∥∥∥∥∥∥∥∥∥


QB (k)

QC (k)

QI (k)

 ṽ
∥∥∥∥∥∥∥∥∥∥

2

= σ (k)2 +

∥∥∥∥QI (k) ṽ

∥∥∥∥2 (29)

so that

σ (k)2 +

∥∥∥∥QI (k) ṽ

∥∥∥∥2 = 1. (30)

Therefore, as σ (k) → 0,

∥∥∥∥QI ṽ

∥∥∥∥2 → 1 so that Φ is nonzero inside the quantum wire

when ṽ is a solution to the boundary value problem in Equation 26. The vector ṽ is

the singular vector of

QB (k)

QC (k)

 corresponding to the smallest singular value σ (k).

The singular values and singular vectors of a matrix can be determined from the

singular value decomposition.

This implementation uses the singular value decomposition routine zgesvd pro-

vided by LAPACK [2]. D. E. Amos has developed the zbesj routine for evaluating

Bessel functions of complex argument and real, nonnegative order, so that the A (k)

and Q (k) matrices can be constructed [1]. The value of σ (k) is minimized using the
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gsl multimin fminimizer nmsimplex2 minimizer of the GNU Scientific Library [5].

The corresponding singular vector determines the wavefunction coefficients of the

approximate eigenfunction [3].

2-electron Eigenstates The eigenstates of the 2-electron system are determined

by the equation [
− ~2

2m∗
(
∇2

1 +∇2
2

)
+

V

|~r1 − ~r2|

]
Ψ = EΨ (31)

where E is an eigenvalue with corresponding eigenfunction Ψ, ∇2
i is the Laplace

operator on the coordinates (xi, yi) = ~ri, and m∗ is the effective mass of the electron.

This equation can be solved perturbatively using the solutions to the unperturbed

equation

− ~2

2m∗
(
∇2

1 +∇2
2

)
Ψ′ = E ′Ψ′ (32)

where Ψ′ = ΦjΦk and E ′ = E ′′j + E ′′k and j 6= k if the electrons have the same spin.

The time-independent free-particle Schrödinger equation,

− ~2

2m∗
∇2Φ = E ′′Φ (33)

determines Φ and E ′′. The first-order energy perturbation is given by

E(1) =
〈

Ψ′
∣∣∣ V

|~r1 − ~r2|

∣∣∣Ψ′〉 (34)

so that the existence of perturbed two-electron eigenstates is confirmed if the energy

perturbation is entirely real (as unperturbed two-electron eigenstates clearly exist).

Regardless of the electrons’ spins, E(1) is entirely real for any bound states in the

continuum (where Ψ is real).
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3 Results

Results obtained from the method of particular solutions indicate the existence of

bound states in the continuum at dot separations of D = 1.75. Figure 3 is a singular

value plot obtained from the method of particular solutions by varying k, showing the

existence of eigenvalues above the continuum energy, k = 3.2070. Figure 7 is a plot of

the eigenfunction corresponding to k = 3.5690 showing the localization of the electron

inside the dots characteristic of a bound state. The bound states in the continuum

shown in Figures 8, 9, 10, and 11 also exhibit localization. For comparison, Figures 4

and 5 show the two true bound states below the continuum energy. These results

confirm the previous work by Ordonez, et al., which indicated the presence of bound

states in the continuum at this dot separation [8].

4 Conclusion

The results of this analysis based on the method of particular solutions indicate

the existence of two-electron bound eigenstates analogous to the one-electron bound

states in the continuum, as well as confirming previous results regarding the same

one-electron bound states. Furthermore, the two-electron states are stable up to first-

order perturbation for combinations of one-electron bound states in the continuum,

as predicted by Sadreev and Babushkina [9]. The stability of these states suggests the

application of such a quantum wire structure as a quantum memory device. Finally,

this method allows for the investigation of complex eigenstates–such as with quasi-

bound states in the continuum–and therefore warrants further investigation.
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Figure 3: The variance of singular value under variance of eigenvalue k2 with a dot
separation of D = 1.75, showing the existence of real eigenvalues. The eigenvalues,
as determined by the minimization routine, are indicated.
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Figure 4: A plot of the probability associated with the first true bound eigenstate at
k = 2.1211.
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Figure 5: A plot of the probability associated with the second bound eigenstate at
k = 3.0539.
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Figure 6: A plot of the probability associated with the continuum eigenstate at
k = 3.2070.
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Figure 7: A plot of the probability associated with the first bound eigenstate in the
continuum at k = 3.5690.
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Figure 8: A plot of the probability associated with the second bound eigenstate in
the continuum at k = 4.1101.
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Figure 9: A plot of the probability associated with the third bound eigenstate in the
continuum at k = 4.9315.
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Figure 10: A plot of the probability associated with the fourth bound eigenstate in
the continuum at k = 5.5647.
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Figure 11: A plot of the probability associated with the fifth bound eigenstate in the
continuum at k = 6.4898.
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A Code Listing

The implementation of this method was written in the language Haskell. Haskell [6]

is a statically typed, purely functional programming language featuring polymorphic

types, lazy evaluation, and automatic garbage collection. Haskell was chosen for this

project because of the author’s familiarity with the language, the ease with which

Haskell can interface with existing codes in C and Fortran, the language’s support for

multiprocessor parallelism without programmer intervention, and the ease of rapid

prototyping. This project took advantage of multiprocessor parallelism on Butler

University’s “BigDawg” computer cluster. A search of a typical spectrum space, such

as in Figure 3, takes 10 to 12 hours.

A.1 Common

{-# LANGUAGE ForeignFunctionInterface,ScopedTypeVariables #-}

-- | This module handles evaluation of Bessel functions of the first kind with complex arguments, required to allow complex energy

eigenvalues. The actual calculation is handled by the Fortran library to which this module interfaces through the C FFI.

module Numeric.AmosBesselJ ( besselJnus ) where

import Control.Monad.Stream

22



import Data.Complex

import Foreign

import Foreign.C.Types

import Foreign.Storable.Complex ()

import Prelude hiding (mapM)

foreign import ccall "zbesj_" zbesj :: Ptr CDouble -> Ptr CDouble -> Ptr CDouble -> Ptr CDouble -> Ptr CDouble -> Ptr CInt -> IO ()

-- | Bessel function of the first kind of real, positive order and complex argument.

besselJnus :: [Double] -> Complex Double -> [Complex Double]

besselJnus nus z = unsafePerformIO $

alloca $ \pzr ->

alloca $ \pzi ->

alloca $ \pcyr ->

alloca $ \pcyi ->

alloca $ \pierr ->

alloca $ \pnu -> do

poke pzr $ floatCoerce $ realPart z

poke pzi $ floatCoerce $ imagPart z

poke pcyr 0.0

poke pcyi 0.0

poke pierr 0

poke pnu 0.0

let worker nu = do poke pnu $ floatCoerce nu

poke pierr 0

zbesj pzr pzi pnu pcyr pcyi pierr

throwErrors nu z $ peek pierr

liftM2 (:+) (fcm $ peek pcyr) (fcm $ peek pcyi)

fcm = liftM floatCoerce

mapM worker nus

floatCoerce :: (RealFloat a, RealFloat b) => a -> b

floatCoerce = uncurry encodeFloat . decodeFloat

throwErrors :: Double -> Complex Double -> IO CInt -> IO ()

throwErrors nu z i =

do throwIf_ (== 1) (const inputError) i

throwIf_ (== 2) (const "zbesj: Overflow.") i

throwIf_ (== 3) (const "zbesj: Large argument degraded precision.") i

throwIf_ (== 4) (const "zbesj: Large argument prevented calculation.") i

throwIf_ (== 5) (const "zbesj: Termination condition not met.") i

where inputError = "zbesj: Input error." ++ params

params = " nu = " ++ show nu ++ ", z = " ++ show z

module Branch (Branch (..), mod’) where

data Branch a = ClosedOpen a a

| OpenClosed a a

size :: Num a => Branch a -> a

size (ClosedOpen l u) = u - l

size (OpenClosed l u) = u - l

inside :: Ord a => a -> Branch a -> Bool

inside x (ClosedOpen l u) = x >= l && x < u

inside x (OpenClosed l u) = x > l && x <= u

below :: Ord a => a -> Branch a -> Bool

below x (ClosedOpen l _) = x < l

below x (OpenClosed l _) = x <= l

mod’ :: (Ord a, Floating a) => Branch a -> a -> a

mod’ branch x

| x ‘inside‘ branch = x

| x ‘below‘ branch = mod’ branch (x + size branch)

| otherwise = mod’ branch (x - size branch)

{-# OPTIONS_GHC -fno-warn-orphans #-}

-- This file contains orphan instances because Complex lacks an instance for Binary.

module Data.Binary.Complex where

import Data.Binary

import Data.Complex

instance (RealFloat a, Binary a) => Binary (Complex a) where

put z = do put $ realPart z

put $ imagPart z

get = do r <- get

i <- get

return $ r :+ i

{-# LANGUAGE TypeFamilies, FlexibleContexts, UndecidableInstances #-}

module Geometry ( Geometry(..)

) where

import Data.List.Stream

import Data.Vector.Stream ()
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import Numeric.LinearAlgebra

import Prelude hiding (concat, concatMap, last, length, map, zip)

class Geometry g where

nMatrixCols :: g -> Int

nBoundaryRows :: g -> Int

nInteriorRows :: g -> Int

boundaryRows :: g -> Complex Double -> [[Complex Double]]

interiorRows :: g -> Complex Double -> [[Complex Double]]

generatePoints :: g -> g

matrix :: g -> Complex Double -> Matrix (Complex Double)

matrix g k = reshape n $ fromList

$ concat $ concat [ boundaryRows g k, interiorRows g k ]

where n = nMatrixCols g

wavefunction :: g -> Complex Double -> Vector (Complex Double) -> [(Double, Double)] -> [Complex Double]

singularValue :: g -> Complex Double -> Double

singularValue g k = last $ toList s

where (_, s, _) = svd $ takeRows (nBoundaryRows g) q

(q, _) = qrEcon $ matrix g k

singularVector :: g -> Complex Double -> Vector (Complex Double)

singularVector g k = inv r <> subVector 0 (nMatrixCols g) (last $ toColumns ws)

where (_, _, ws) = svd $ takeRows (nBoundaryRows g) q

(q, r) = qrEcon $ matrix g k

qrEcon :: Field e => Matrix e -> (Matrix e, Matrix e)

qrEcon m = (q’, r’)

where (q, r) = qr m

q’ = takeColumns (cols m) q

r’ = takeRows (cols m) r

{-# LANGUAGE TypeFamilies, FlexibleInstances, TemplateHaskell, EmptyDataDecls #-}

module OpenDots ( module Data.Default

, module Geometry

, OpenDots(..)

, Expansion(..)

, Segment(..)

, expansions

, segments

, (!)

, Coordinate(..)

, Point

) where

import Branch

import Control.Arrow ((&&&), (^<<))

import Control.Monad.Stream (liftM)

import Data.Binary

import Data.Binary.Vector ()

import Data.Default

import Data.List.Stream

import Data.Pair

import qualified Data.Map as Map

import Data.Map ((!))

import Geometry

import Generics.Regular

import Generics.Regular.Functions.Binary hiding (Binary)

import Numeric.AmosBesselJ

import Numeric.LinearAlgebra

import Prelude hiding ((++), concat, concatMap, filter, length, map, replicate, take, zip, zipWith)

import System.IO.Unsafe (unsafePerformIO)

import System.Random.Mersenne

data Expansion

= Corner1 | Corner2 | Corner3 | Corner4 | LeadL

| LeadR deriving (Eq, Ord, Show, Enum)

instance Binary (Expansion) where

put = put . fromEnum

get = liftM toEnum get

expansions :: [Expansion]

expansions = enumFrom Corner1

data Segment

= Bottom | LeadLTop | LeadLLeft | LeadRTop | LeadRRight | DotALeft

| DotARight | DotATop | DotBLeft | DotBRight | DotBTop | Top

deriving (Eq, Ord, Show, Enum)

instance Binary (Segment) where

put = put . fromEnum

get = liftM toEnum get

segments :: [Segment]

segments = enumFrom Bottom
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data Coordinate = Global | Local Expansion deriving (Eq, Ord)

$(deriveAll ’’Coordinate "PFCoordinate")

type instance PF Coordinate = PFCoordinate

instance Binary Coordinate where

put = gput

get = gget

type Point = Map.Map Coordinate (Pair Double)

data OpenDots = OpenDots { xBound :: Int

, yBound :: Int

, nContPts :: Int

, nIntPts :: Int

, nLeadTerms :: Int

, nCornerTerms :: Int

, dotWidth :: Double

, dotHeight :: Double

, dotSpacing :: Double

, leadLength :: Double

, boundPts :: Map.Map (Segment) [Point]

, intPts :: [Point] }

$(deriveAll ’’OpenDots "PFOpenDots")

type instance PF OpenDots = PFOpenDots

instance Binary OpenDots where

put = gput

get = gget

instance Default OpenDots where

def = OpenDots

{ xBound = 40

, yBound = 20

, nContPts = 40

, nIntPts = 80

, nLeadTerms = 12

, nCornerTerms = 12

, dotWidth = 2.0

, dotHeight = 2.0

, dotSpacing = 1.75

, leadLength = 0.5

, boundPts = Map.empty

, intPts = []

}

origin :: OpenDots -> Expansion -> Pair Double

origin od Corner1 = (-1.0 * (dotSpacing od + dotWidth od), 1.0)

origin od Corner2 = (-1.0 * dotSpacing od, 1.0)

origin od Corner3 = (dotSpacing od, 1.0)

origin od Corner4 = (dotSpacing od + dotWidth od, 1.0)

origin od LeadL = (-1.0 * (dotSpacing od + dotWidth od + leadLength od), 0.0)

origin od LeadR = (dotSpacing od + dotWidth od + leadLength od, 0.0)

toLocal :: OpenDots -> Pair Double -> Expansion -> Pair Double

toLocal od pt e | e == LeadL = (-x, y)

| e == LeadR = (x, y)

| otherwise = (r, h)

where

(x, y) = pt ‘psub‘ origin od e

h = mod’ (branch e) $ atan2 y x - offset e

r = sqrt (x ** 2.0 + y ** 2.0)

fromGlobal :: OpenDots -> Pair Double -> Point

fromGlobal g point =

Map.fromList $ concat

[ (Global, point) : []

, zip (map Local expansions) (map (toLocal g point) expansions)

]

instance Geometry OpenDots where

nMatrixCols od = 2 * nLeadTerms od + 4 * nCornerTerms od

nBoundaryRows od = nBoundPts + 2 * nContPts od

where nBoundPts = length $ concat $ Map.elems $ boundPts od

nInteriorRows = nIntPts

boundaryRows od k = concatMap (boundaryRows’ od k) segments

interiorRows od k = map row $ intPts od

where row v = concat [ concatMap (\n -> terms od n k v) $ enumFromTo Corner1 Corner4, leadBuffer od, leadBuffer od ]

generatePoints od = od { boundPts = uniformBoundaryPoints od, intPts = randomInteriorPoints od }

wavefunction od k coef rs = toList $ mat <> coef

where mat = fromLists $ map wf rs

wf r | interior od r = cornerRow od k $ fromGlobal od r

| inLeadL od r = leadRow od LeadL k $ fromGlobal od r

| inLeadR od r = leadRow od LeadR k $ fromGlobal od r

| otherwise = zeroRow

zeroRow = concat [ cornersBuffer od, leadBuffer od, leadBuffer od ]
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boundaryRows’ :: OpenDots -> Complex Double -> Segment -> [[Complex Double]]

boundaryRows’ od k s | s == LeadLLeft = concat [ map (leadBoundRow LeadL) pts, map (leadDerivRow LeadL) pts ]

| s == LeadRRight = concat [ map (leadBoundRow LeadR) pts, map (leadDerivRow LeadR) pts ]

| otherwise = map (cornerRow od k) pts

where leadBoundRow ex = uncurry sub ^<< cornerRow od k &&& leadRow od ex k

leadDerivRow = ddX od . leadBoundRow

pts = boundPts od ! s

branch :: Expansion -> Branch Double

branch Corner1 = ClosedOpen 0 (2.0 * pi)

branch Corner2 = ClosedOpen 0 (2.0 * pi)

branch Corner3 = OpenClosed (- pi / 2.0) (3.0 * pi / 2.0)

branch Corner4 = ClosedOpen 0 (2.0 * pi)

branch _ = error "OpenDots.branch: Argument must be a corner."

offset :: Expansion -> Double

offset Corner1 = pi

offset Corner2 = pi / 2.0

offset Corner3 = pi

offset Corner4 = pi / 2.0

offset _ = error "OpenDots.offset: Argument must be a corner."

cornerRow :: OpenDots -> Complex Double -> Point -> [Complex Double]

cornerRow od k r = concat [ concatMap (\each -> terms od each k r) $ enumFromTo Corner1 Corner4

, leadBuffer od, leadBuffer od ]

leadRow :: OpenDots -> Expansion -> Complex Double -> Point -> [Complex Double]

leadRow od ex k r = concat [ cornersBuffer od

, if ex == LeadL then ts else buf

, if ex == LeadR then ts else buf ]

where ts = terms od ex k r

buf = leadBuffer od

leadBuffer :: OpenDots -> [Complex Double]

leadBuffer od = replicate (nLeadTerms od) (0.0 :+ 0.0)

cornersBuffer :: OpenDots -> [Complex Double]

cornersBuffer od = replicate (4 * nCornerTerms od) (0.0 :+ 0.0)

interior :: OpenDots -> Pair Double -> Bool

interior od (x, y) = ((abs x < dotSpacing od + dotWidth od + leadLength od) && (y < 1.0)) ||

((y < dotHeight od) && (abs x < dotSpacing od + dotWidth od) && (abs x > dotSpacing od))

inLeadL :: OpenDots -> Pair Double -> Bool

inLeadL od (x, y) = (x <= -(dotSpacing od) - dotWidth od - leadLength od) && (y <= 1.0)

inLeadR :: OpenDots -> Pair Double -> Bool

inLeadR od (x, y) = (x >= dotSpacing od + dotWidth od + leadLength od) && (y <= 1.0)

terms :: OpenDots -> Expansion -> Complex Double -> Point -> [Complex Double]

terms od e k pt = if leads then leadTerms ms e k pt else cornerTerms ms e k pt

where m = if leads then nLeadTerms od else nCornerTerms od

ms = map fromIntegral $ enumFromTo 1 m

leads = e == LeadL || e == LeadR

cornerTerms :: [Double] -> Expansion -> Complex Double -> Point -> [Complex Double]

cornerTerms ms expansion k v | h == 0.0 || h == 3.0 * pi / 2.0 = map (:+ 0.0) $ scale 0.0 ms

| otherwise = mul bessels besselSines

where (r, h) = v ! Local expansion

nus = scale (2.0 / 3.0) ms

bessels = besselJnus nus (k * (r :+ 0.0))

besselSines = map zin $ scale (2.0 / 3.0 * h) ms

zin = (:+ 0.0) . sin

leadTerms :: [Double] -> Expansion -> Complex Double -> Point -> [Complex Double]

leadTerms ms expansion k v = mul exps expSines

where (x, y) = v ! Local expansion

exps = map exp $ scale ((-x) :+ 0.0) $ map alpha ms

alpha j = sqrt $ ((j * pi * j * pi) :+ 0.0) - (k * k)

expSines = map zin $ scale (pi * y) ms

zin = (:+ 0.0) . sin

ddX :: OpenDots -> (Point -> [Complex Double]) -> Point -> [Complex Double]

ddX od f v = scaleRecip ((2.0 * delta) :+ 0.0) $ sub (f d2) (f d1)

where d2 = fromGlobal od $ (x + delta, y)

d1 = fromGlobal od $ (x - delta, y)

(x, y) = v ! Global

delta = 1.0E-10

uniformBoundXs :: OpenDots -> Int -> [Double]

uniformBoundXs od n = map ((+ (-(leadLength od) - dotSpacing od - dotWidth od)) . (* int)) ns

where ns = map fromIntegral $ enumFromTo 1 n

int = 2.0 * (leadLength od + dotSpacing od + dotWidth od) / (fromIntegral n + 1)

uniformBoundYs :: OpenDots -> Int -> [Double]

uniformBoundYs od n = map (* int) ns

where ns = map fromIntegral $ enumFromTo 1 n

int = dotHeight od / (fromIntegral n + 1)

continuityYs :: Int -> [Double]

continuityYs n = map (* int) ns
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where ns = map fromIntegral $ enumFromTo 1 n

int = 1.0 / (fromIntegral n + 1)

uniformBoundaryPoints :: OpenDots -> Map.Map Segment [Point]

uniformBoundaryPoints od = Map.fromList $ zip segments $ map (map (fromGlobal od) . points od) segments

points :: OpenDots -> Segment -> [Pair Double]

points od c =

let pts | c == Bottom = map (flip pair 0.0) boundXs

| c == LeadLTop = map (flip pair 1.0) boundXs

| c == LeadLLeft = map (padd (origin od LeadL) . pair 0.0) $ continuityYs $ nContPts od

| c == Top = map (flip pair 1.0) boundXs

| c == LeadRTop = map (flip pair 1.0) boundXs

| c == LeadRRight = map (padd (origin od LeadR) . pair 0.0) $ continuityYs $ nContPts od

| c == DotATop = map (flip pair $ dotHeight od) boundXs

| c == DotBTop = map (flip pair $ dotHeight od) boundXs

| c == DotARight = map (pair $ -(dotSpacing od)) boundYs

| c == DotALeft = map (flip psub (dotWidth od, 0)) $ points od DotARight

| c == DotBLeft = map (padd (2.0 * dotSpacing od, 0)) $ points od DotARight

| c == DotBRight = map (padd (dotWidth od, 0)) $ points od DotBLeft

| otherwise = undefined

in filter (onSegment od c) pts

where boundXs = uniformBoundXs od $ xBound od

boundYs = uniformBoundYs od $ yBound od

onSegment :: OpenDots -> Segment -> Pair Double -> Bool

onSegment od s pt

| s == Bottom = True

| s == LeadLTop = -x >= dotSpacing od + dotWidth od

| s == LeadLLeft = y < 1.0

| s == Top = abs x <= dotSpacing od

| s == LeadRTop = x >= dotSpacing od + dotWidth od

| s == LeadRRight = y < 1.0

| s == DotATop = -x <= dotSpacing od + dotWidth od && -x >= dotSpacing od

| s == DotBTop = x <= dotSpacing od + dotWidth od && x >= dotSpacing od

| s == DotARight = y > 1.0 && y < dotHeight od

| otherwise = True

where (x, y) = pt

randomInteriorPoints :: OpenDots -> [Point]

randomInteriorPoints od = unsafePerformIO $ do

xs <- liftM (map ((+ offsetX) . (* scaleX))) $ getStdGen >>= randoms

ys <- liftM (map (* scaleY)) $ getStdGen >>= randoms

let pts = zip xs ys

return $ map (fromGlobal od) $ take n $ filter (interior od) pts

where scaleX = 2.0 * (dotSpacing od + dotWidth od + leadLength od)

offsetX = -(dotSpacing od) - dotWidth od - leadLength od

scaleY = dotHeight od

n = nIntPts od

-- | This module is used in finding eigenvalues of the Hamiltonian for a ’Geometry’. First, a ’spectrum’ must be generated, giving

minimum singular values at a sampling of trial eigenvalues. The function ’eigenvalues’ uses this information to find regions

probably containing actual eigenvalues and minimizes the singular value function of the geometry in those regions to identify them.

module Spectrum ( Spectrum(..)

, spectrum

, plottableSpectrum

, neighborhood

, interval

, onEdge

, targets

, eigenvalues

, module Data.Default ) where

import Data.Binary

import Data.Binary.Complex ()

import Data.Default

import Geometry

import Numeric.GSL hiding (si)

import Numeric.LinearAlgebra hiding (eigenvalues, singularValues)

data Spectrum = Spectrum { minRe :: Double

, maxRe :: Double

, minIm :: Double

, maxIm :: Double

, resRe :: Int

, resIm :: Int

, spec :: [(Complex Double, Double)]

}

instance Binary Spectrum where

put s = do put $ minRe s

put $ maxRe s

put $ minIm s

put $ maxIm s

put $ resRe s

put $ resIm s

put $ spec s

get = do nr <- get

xr <- get

ni <- get
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xi <- get

sr <- get

si <- get

s <- get

return Spectrum { minRe = nr

, maxRe = xr

, minIm = ni

, maxIm = xi

, resRe = sr

, resIm = si

, spec = s

}

instance Default Spectrum where

def = Spectrum { minRe = 0.0

, maxRe = 9.0

, minIm = -0.5

, maxIm = 0.5

, resRe = 30

, resIm = 10

, spec = []

}

neighborhood :: Spectrum -> Complex Double -> [(Complex Double, Double)]

neighborhood s z = filter (\(w, _) -> magnitude (z - w) < interval s) $ spec s

interval :: Spectrum -> Double

interval s = 2.0 * magnitude (r :+ im)

where r = (maxRe s - minRe s) / fromIntegral (resRe s)

im = (maxIm s - minIm s) / fromIntegral (resIm s)

onEdge :: Spectrum -> Complex Double -> Bool

onEdge s z = z ‘elem‘ edges

where realEdge z’ = let r = realPart z’ in r == maxRe s || r == minRe s

imagEdge z’ = let im = imagPart z’ in im == maxIm s || im == minIm s

edges = filter (\z’ -> realEdge z’ || imagEdge z’) $ map fst $ spec s

spectrum :: Geometry g => g

-> (Int, Int)

-> (Double, Double)

-> (Double, Double)

-> [(Complex Double, Double)]

spectrum geom (xSamples, ySamples) (xLower, xUpper) (yLower, yUpper) =

zip trialValues singularValues

where trialValues = [ x :+ y | x <- realSamples, y <- imagSamples ]

realSamples = map ((+ xLower) . (* xInterval) . fromIntegral)

$ enumFromTo 0 (xSamples - 1)

imagSamples = map ((+ yLower) . (* yInterval) . fromIntegral)

$ enumFromTo 0 (ySamples - 1)

xInterval = (xUpper - xLower) / fromIntegral (xSamples - 1)

yInterval = (yUpper - yLower) / fromIntegral (ySamples - 1)

singularValues = map (singularValue geom) trialValues

plottableSpectrum :: [(Complex Double, Double)] -> [Vector Double]

plottableSpectrum = map (\(z, s) -> fromList [ realPart z, imagPart z, s ])

targets :: Spectrum

-> [Complex Double]

targets s = filter (not . onEdge s) $ map fst $ filter isMinimum $ filter ((<= 0.6) . snd) $ spec s

where isMinimum (z, sing) = sing <= minimum (map snd (neighborhood s z))

eigenvalues :: (Complex Double -> Double)

-> Spectrum

-> [Complex Double]

eigenvalues singValue s = map eigenvalue $ targets s

where eigenvalue z = toC $ fst $ minimize NMSimplex2 precision iterations [interval s, interval s] f [realPart z, imagPart z]

f = singValue . toC

precision = 1E-10

toC xs = head xs :+ head (tail xs)

iterations = 1000

{-# OPTIONS_GHC -fno-warn-orphans #-}

-- This file contains orphan instances which are missing from hmatrix for vectors as lists.

{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, FlexibleContexts, UndecidableInstances #-}

module Data.Vector.Stream where

import Control.Arrow ((&&&))

import Data.List.Stream

import Numeric.LinearAlgebra

import Prelude hiding (map, unzip, zipWith)

instance Container [] Double where

toComplex (re, im) = zipWith (:+) re im

fromComplex = unzip . map (realPart &&& imagPart)

comp = map (:+ 0.0)

conj = map conjugate

real = id

complex = comp

instance Container [] (Complex Double) where

toComplex (re, im) = zipWith (:+) re im
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fromComplex = unzip . map (realPart &&& imagPart)

comp = map (:+ 0.0)

conj = map conjugate

real = comp

complex = id

instance (Container [] e) => Linear [] e where

scalar x = [x]

scale x = map (* x)

addConstant x = map (+ x)

add = zipWith (+)

sub = zipWith (-)

mul = zipWith (*)

divide = zipWith (/)

scaleRecip x = map (/ x)

equal = (==)

{-# OPTIONS_GHC -fno-warn-orphans #-}

-- This file contains orphan instances because hmatrix doesn’t provide a Binary instance for Vector.

module Data.Binary.Vector where

import Control.Monad

import Data.Binary

import Numeric.LinearAlgebra

instance (Element e, Binary e) => Binary (Vector e) where

put = put . toList

get = liftM fromList get

A.2 Executables

{-# LANGUAGE ScopedTypeVariables #-}

module Main where

import Control.Parallel.Strategies

import Data.Binary

import Data.Binary.Complex ()

import Geometry

import OpenDots

import Spectrum

import System.Environment (getArgs)

main :: IO ()

main = do (file:_) <- getArgs

findEigenvalues $ ’-’ : file

findEigenvalues :: String -> IO ()

findEigenvalues name = do (pts :: Spectrum) <- decodeFile $ "spectrum" ++ name ++ ".bin"

(od :: OpenDots) <- decodeFile $ "geometry" ++ name ++ ".bin"

let regs = targets pts

evs = flip using (parList rdeepseq) $ eigenvalues (singularValue od) pts

svs = map (singularValue od) evs

putStrLn "Targets:"

putStrLn $ unlines $ map show regs

putStrLn "(Eigenvalue, Singular Value)"

putStrLn $ unlines $ map show $ zip evs svs

encodeFile ("eigenvalues" ++ name ++ ".bin") evs

module Main where

import Data.Binary

import Data.Binary.Complex ()

import OpenDots

import System.Console.GetOpt

import System.Environment (getArgs)

options :: [OptDescr (OpenDots -> OpenDots)]

options =

[ Option "t" ["dotsterms"] (ReqArg (\n o -> o { nCornerTerms = read n }) "INT") "number of dot expansion terms"

, Option "l" ["leadterms"] (ReqArg (\n o -> o { nLeadTerms = read n }) "INT") "number of lead expansion terms"

, Option "i" ["interior"] (ReqArg (\n o -> o { nIntPts = read n }) "INT") "number of interior points"

, Option "x" ["xBound"] (ReqArg (\n o -> o { xBound = read n }) "INT") "number of x boundary grid steps"

, Option "y" ["yBound"] (ReqArg (\n o -> o { yBound = read n }) "INT") "number of y boundary grid steps"

, Option "d" ["interdot"] (ReqArg (\d o -> o { dotSpacing = read d }) "DOUBLE") "edge-to-edge dot separation"

, Option "w" ["width"] (ReqArg (\d o -> o { dotWidth = read d }) "DOUBLE") "dot width"

, Option "h" ["height"] (ReqArg (\d o -> o { dotHeight = read d }) "DOUBLE") "dot height"

, Option "c" ["cont"] (ReqArg (\n o -> o { nContPts = read n}) "INT") "continuity points"

]

main :: IO ()

main = do argv <- getArgs

case getOpt’ Permute options argv of

(o, [f], _, []) -> runOpenDots f $ foldl (flip id) def o

(_, _, _, er) -> error $ concat er
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runOpenDots :: String -> OpenDots -> IO ()

runOpenDots file od = let geometryFile = "geometry-" ++ file

in encodeFile (geometryFile ++ ".bin") $ generatePoints od

{-# LANGUAGE ScopedTypeVariables #-}

module Main where

import Control.Parallel.Strategies

import Data.Binary

import Data.Binary.Complex ()

import OpenDots

import Spectrum

import System.Console.GetOpt

import System.Environment (getArgs)

options :: [OptDescr (Spectrum -> Spectrum)]

options =

[ Option "x" ["minre"] (ReqArg (\d o -> o { minRe = read d }) "DOUBLE") "min. real component for k values"

, Option "y" ["maxre"] (ReqArg (\d o -> o { maxRe = read d }) "DOUBLE") "max. real component for k values"

, Option "u" ["minim"] (ReqArg (\d o -> o { minIm = read d }) "DOUBLE") "min. imaginary component for k values"

, Option "v" ["maxim"] (ReqArg (\d o -> o { maxIm = read d }) "DOUBLE") "max. imaginary component for k values"

, Option "r" ["resre"] (ReqArg (\n o -> o { resRe = read n }) "INT") "k spectrum real resolution"

, Option "s" ["resim"] (ReqArg (\n o -> o { resIm = read n }) "INT") "k spectrum imaginary resolution"

]

main :: IO ()

main = do argv <- getArgs

case getOpt’ Permute options argv of

(o, [f], _, []) -> runOpenDots f $ foldl (flip id) def o

(_, _, _, er) -> error $ concat er

runOpenDots :: String -> Spectrum -> IO ()

runOpenDots file s = do let geometryFile = "geometry-" ++ file

(od :: OpenDots) <- decodeFile (geometryFile ++ ".bin")

let pts = flip using (parList rdeepseq)

$ spectrum od (resRe s, resIm s) (minRe s, maxRe s) (minIm s, maxIm s)

spectrumFile = "spectrum-" ++ file

encodeFile (spectrumFile ++ ".bin") $ s { spec = pts }

module Main where

import Control.Monad.Stream (liftM)

import Data.Binary

import Data.Binary.Complex ()

import Data.Complex

import Data.List.Stream

import Prelude hiding ((++), filter, map, unlines, unwords)

import Spectrum

import System.Environment (getArgs)

import System.IO

main :: IO ()

main = do

(file:_) <- getArgs

let name = "spectrum-" ++ file

s <- liftM spec $ decodeFile $ name ++ ".bin"

withFile (name ++ ".txt") WriteMode $ flip hPutStr $

unlines $ map (unlines . map (\(x :+ y, z) -> unwords [show x, show y, show z])) $ -- Data file formatted for gnuplot: each

line is a point with coordinates separated by spaces and each block is a scanline, with blocks separated by blank lines.

map (\x -> filter ((== x) . realPart . fst) s) $ -- Scanlines as recognized by gnuplot: lines of constant ’x’.

nub $ map (realPart . fst) s -- Unique ’x’ values.

module Main where

import Data.Binary

import Data.Binary.Complex ()

import Data.List.Stream

import Geometry

import Numeric.LinearAlgebra

import OpenDots

import Prelude hiding ((++), filter, head, map, unlines, unwords, zipWith)

import System.Environment (getArgs)

import System.IO

main :: IO ()

main = do (file:_) <- getArgs

let geomFile = "geometry-" ++ file

evsFile = "eigenvalues-" ++ file

od <- decodeFile $ geomFile ++ ".bin"

evs <- decodeFile $ evsFile ++ ".bin"

mapM_ (plotWavefunction file od) evs

plotWavefunction :: String -> OpenDots -> Complex Double -> IO ()

plotWavefunction file od k =

let

wf = wavefunction od k (singularVector od k) grid

grid = [ (x, y) | x <- xs, y <- ys ]
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xMax = 1.5 * (dotSpacing od + dotWidth od + leadLength od)

xs = toList $ linspace 200 (-xMax, xMax)

ys = toList $ linspace 30 (0.0, dotHeight od)

pts = zipWith (\(x, y) z -> [x, y, magnitude z ** 2.0]) grid wf

in do

withFile ("wavefunction-" ++ file ++ "-k_" ++ show k ++ ".txt") WriteMode $ flip hPutStr $

unlines $ map (unlines . map (unwords . map show)) $ -- Data file formatted for gnuplot: each line is a point with

coordinates separated by spaces and each block is a scanline, with blocks separated by blank lines.

map (\x -> filter ((== x) . head) pts) $ -- Scanlines as recognized by gnuplot: lines of constant ’x’.

nub $ map head pts -- Unique ’x’ values.

A.3 Utilities

#!/bin/bash

cd zbesj

gfortran -O3 -c *.f

cd ..

export GHC="ghc -Wall -threaded -feager-blackholing --make -O2 -fexcess-precision -fvia-C -optc-O3 -lgfortran"

${GHC} GenerateGeometry.hs ./zbesj/*.o

${GHC} GenerateSpectrum.hs ./zbesj/*.o

${GHC} FindEigenvalues.hs ./zbesj/*.o

${GHC} PlotSpectrum.hs

${GHC} PlotBoundary.hs ./zbesj/*.o

${GHC} PlotWavefunctions.hs ./zbesj/*.o

${GHC} DumpMatrix.hs ./zbesj/*.o

${GHC} CheckComplete.hs ./zbesj/*.o
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