8 research outputs found

    The Resistance of European Beech (Fagus sylvatica) From the Eastern Natural Limit of Species to Climate Change

    Get PDF
    In this study, different approaches were used to investigate the vulnerability of beech forests, located at the eastern limit of their natural range, to climate change. To accomplish this, six 2500 m2 plots were sampled in four European beech forest genetic resources, located in Romania at different altitudinal levels, varying from 230 to 580 m in the Bacău hills and between 650 and 1300 m in the Curvature Carpathian (Braşov region). The analysis of trees phenotypic traits, their radial growth, and the regeneration, did not indicate a vulnerability of the sampled stands to the fluctuations of the environmental factors from the 1950-2014 period. The growth indices of all three populations of Bacău hills are negatively correlated with both June air temperature of current year and September of the previous year. The precipitation amount of September previous year positively influenced the growth indices. The radial growth of plots in Braşov region is slightly linked to the climate. The temperature during the growing season represents a limiting factor for stands that are located outside of the optimal altitudinal species distribution (600-1200 m, in Romania), especially at low altitudes. Our results indicated that a rise of the temperature accompanied by a possible reduction of the precipitations (as is predicted for the coming years) could increase the sensibility of beech forests at lower altitude

    The typology, frequency and magnitude of some behaviour events in case of torrential hydrographical management works in the upper Tarlung watershed

    Get PDF
    During the 20-25 years from their startup, the torrential hydrographicalmanagement works carried out in the upper Tărlung Watershed(55 dams, 22 sills, 25 traverses and 4 outlet canals) have exposed a number of 24 behaviour event types: 13 out of them reduce the safety of exploitation and the sustainability of the works (hereinafter called damages), while the other 11 reduce the functionality of the works (hereinafter called disfunctionalities). The following behaviour events have the highest frequency:(i) damages caused by water and alluvia erosion (erosive damages),followed by breakages, in the category of damages, and (ii) unsupervised installation of forest vegetation on the managed torrential hydrographical network and apron siltation, in the category of disfunctionalities. For methodological reasons, only the erosive damage of works was successively analysed, according to two criteria: the average depth (cm) in the eroded area and the percentage of the erosive area out of the total surface. Further on, by combining the two criteria for analysis, five representation areas with the same damage intensity were defined (very low, low, medium, high and very high intensity). With the aid of the event frequency values recorded in these areas and of the coefficients attributed to each intensity class (from 1 for very low intensity to 5 for very high intensity), the author reached the conclusion that the level of the recorded intensity of the damage caused by water and alluvia erosion ranged from very low to low.</p

    Ten principles to integrate the water-energy-land nexus with climate services for co-producing local and regional integrated assessments

    Get PDF
    The water-energy-land nexus requires long-sighted approaches that help avoid maladaptive pathways to ensure its promise to deliver insights and tools that improve policy-making. Climate services can form the foundation to avoid myopia in nexus studies by providing information about how climate change will alter the balance of nexus resources and the nature of their interactions. Nexus studies can help climate services by providing information about the implications of climate-informed decisions for other economic sectors across nexus resources. First-of-its-kind guidance is provided to combine nexus studies and climate services. The guidance consists of ten principles and a visual guide, which are discussed together with questions to compare diverse case studies and with examples to support the application of the principles

    SWAT Model Adaptability to a Small Mountainous Forested Watershed in Central Romania

    No full text
    This study aims to build and test the adaptability and reliability of the Soil and Water Assessment Tool hydrological model in a small mountain forested watershed. This ungauged watershed covers 184 km2 and supplies 90% of blue water for the Brașov metropolitan area, the second largest metropolitan area of Romania. After building a custom database at the forest management compartment level, the SWAT model was run. Further, using the SWAT-CUP software under the SUFI2 algorithm, we identified the most sensitive parameters required in the calibration and validation stage. Moreover, the sensitivity analysis revealed that the surface runoff is mainly influenced by soil, groundwater and vegetation condition parameters. The calibration was carried out for 2001&ndash;2010, while the 1996&ndash;1999 period was used for model validation. Both procedures have indicated satisfactory performance and a lower uncertainty of model results in replicating river discharge compared with observed discharge. This research demonstrates that the SWAT model can be applied in small ungauged watersheds after an appropriate parameterisation of its databases. Furthermore, this tool is appropriate to support decision-makers in conceiving sustainable watershed management. It also guides prioritising the most suitable measures to increase the river basin resilience and ensure the water demand under climate change

    Relation between Topography and Gap Characteristics in a Mixed Sessile Oak&ndash;Beech Old-Growth Forest

    No full text
    The interest to assess the relationship between forest gap characteristics and topography features has been growing in the last decades. However, such an approach has not been studied in undisturbed mixed sessile oak&ndash;beech old-growth forests. Therefore, the present study carried out in one of the best-preserved sessile oak&ndash;beech old-growth forests in Europe, aims to assess the influence of topographic features (slope, altitude and aspect) on (i) some characteristics of canopies and expanded gaps (surface, diameter and perimeter) and (ii) the proportion of beech and sessile oak as bordering trees, gap fillers and gap makers. Through a complete gap survey on an area of 32 ha, 321 gaps were identified and mapped. The largest gaps and also the highest gap frequency (140) was found in the slope class (15.1&ndash;20&deg;), while the gap frequency increased with altitude, with 99 gaps being recorded at 601&ndash;650 m a.s.l. The size and perimeter of the canopy and expanded gaps, as well as the number of gap makers, were negatively related to the slope and altitude. The expanded gap to canopy gap size ratio decreased with the slope and was positively related to the altitude, while a significant negative decrease in gap filler density with altitude was encountered. The sessile oak participation ratio as bordering trees forming the gap increased not only with the altitude but also with the slope. The topography plays an important role in the formation of gaps as well as in the characteristics of the future stand. This study provides valuable insights into the relationship between canopy gap characteristics and topography, which is useful information for forest owners that pursue the design of forest management toward nature-based solutions

    Meteorological data collected at the Tarlung reservoir, located in the centre of Romania

    No full text
    This data was obtained from the project CLISWELN funded by ERA4CS. ERA4CS is an ERA-NET initiated by JPI Climate, and CLISWELN is funded by BMBF (DE),UEFISCDI (RO), BMBWF and FFG (AT), and MINECO (ES), with co-funding from the European Union (Grant690462) The meteorological daily data registered outside and inside of the forest and consist of precipitations, air temperature, air humidity, photon flux, solar radiation, wind speed and direction and soil moisture. This data has been used in SWAT hydrological model

    Co-production of Climate Services : A diversity of approaches and good practice from the ERA4CS projects (2017–2021)

    Get PDF
    This guide presents a joint effort of projects funded under the European Research Area for Climate Services (ERA4CS) (http://www.jpi-climate.eu/ERA4CS), a co- funded action initiated by JPI Climate with co-funding by the European Union (Grant 690462), 15 national public Research Funding Organisations (RFOs), and 30 Research Performing Organisations (RPOs) from 18 European countries. This guide sets out to increase the understanding of different pathways, methods, and approaches to improve knowledge co-production of climate services with users as a value-added activity of the ERA4CS Programme. Reflecting on the experiences of 16 of the 26 projects funded under ERA4CS, this guide aims to define and recommend good practices for transdisciplinary knowledge co-production of climate services to researchers, users, funding agencies, and private sector service providers. Drawing on responses from ERA4CS project teams to a questionnaire and interviews, this guide maps the diversity of methods for stakeholder identification, involvement, and engagement. It also conducts an analysis of methods, tools, and mechanisms for engagement as well as evaluation of co-production processes. This guide presents and discusses good practice examples based on the review of the ERA4CS projects, identifying enablers and barriers for key elements in climate service co-production processes. These were: namely (i) Forms of Engagement; (ii) Entry Points for Engagement; and, (iii) Intensity of Involvement. It further outlines key ingredients to enhance the quality of co-producing climate services with users and stakeholders. Based on the analysis of the lessons learned from ERA4CS projects, as well as a review of key concepts in the recent literature on climate service co-production, we provide a set of recommendations for researchers, users, funders and private sector providers of climate services. This report is not externally peer-reviewed</p
    corecore