11 research outputs found

    Research and Science Today No. 2(4)/2012

    Full text link

    THE DEVELOPMENT OF THE SWIMMING PERFORMANCE AT ADULT AGE THROUGH MASTERS COMPETITIONS

    No full text
    Through consistent training, swimmers at adult age can obtain outstandind results in masters swimming movement, results that can be comparable to the activity of high performance swimmers. With a good effort dosing and an efficient programming of their effort, their competional results are improving constantly, and competitors can obtain medals in continental and world competitions. In addition to these results, one can speak of o movement that promotes health at any age, because of the benefits of swimming on human body

    Elemental and macromolecular modifications in Triticum aestivum L. plantlets under different cultivation conditions.

    No full text
    Young wheat plantlets (wheatgrass), represent a significant source of minerals, enzymes, vitamins, while also rich in phenolics and chlorophylls, with considerable bioactivities. As the biosynthesis of such compounds may be influenced by growth conditions, the current research assesses wheatgrass composition in soil based and hydroponic systems, using water with different elemental composition. FTIR spectroscopy did not reveal significant variations between juice and extracts cultivated in different setups. Surface elemental composition indicated higher Na, P, Si concentrations in hydroponic plants, while AAS analyses showed increased Ca and Mn in soil presence. HPLC-MS of extracts showed that soil and spring water increased chlorophyll and hydroxychlorophyll a concentrations. Phenolic contents were higher in hydroponic plants, while maximum values were recorded for spring water. Radical scavenging activity was stimulated by the use of spring water. Results indicate that wheatgrass with improved mineral and macromolecular composition may be obtained using accessible cultivation setups

    Preparation of silica doped titania nanoparticles with thermal stability and photocatalytic properties and their application for leather surface functionalization

    No full text
    Doped nanoparticles based on titanium dioxide are of interest for their multifunctional properties and enlarged photocatalytic activity in visible domain. Silica doped titanium dioxide nanoparticles were prepared by hydrothermal method and their structural characteristics and photocatalytic activity were determined, in order to be used for leather coating as alternative to halogen based flame retardants and dry cleaning solvents. A range of concentrations from 2% to 20% silica doped titanium dioxide nanoparticles (% denotes the theoretical weight percent of Si) was synthesized and characterized by ICP-OES, FT-IR, UV-vis spectroscopy, XRD, HRTEM and DLS. Titanium dioxide network penetration was supported by Si-O-Ti and OH identification in FT-IR spectra mainly on surface of 10% and 20% silica doped titanium dioxide nanoparticles. The increase of Si-O-Ti bonds with Si dopant concentration acts as efficient barriers against sinterization and growth of TiO2 particles and explains the low particle size identified in HRTEM analyses as compared to undoped TiO2NPs. UV-vis diffuse reflectance spectra of doped titanium dioxide nanoparticles showed the shifting of absorption band to visible domain for 10% silica doped titanium dioxide nanoparticles. The crystallite sizes were calculated from XRD spectra, ranging between 16.2 and 18.1 nm. HRTEM measurement of hydrothermally synthesized titanium dioxide nanoparticles showed anatase crystallites in the range of 8.8–27 nm, while in the 20% silica doped titanium dioxide nanoparticle sample smaller crystallite with sizes between 2.7 nm and 3.5 nm was identified due to the constraints of the SiO2-based amorphous matrix. Nano sizes of 64 nm and 72 nm were found in water dispersions of 10% and 20% silica doped titanium dioxide nanoparticles and the Zeta potentials were of −53.6 mV and −52.9 mV, which indicate very good stabilities. The leather surface treated with composites of film forming polymers and 10% silica doped titanium dioxide nanoparticles displayed photocatalytic properties against methylene blue dye under UV and visible light exposure, attributed to reactive species generation with effect on surface hydrophilicity increase. The activation energies for decomposition of leathers treated with 10% and 20% silica doped titanium dioxide nanoparticles were 2.083 × 104 J/mol and 2.36 × 104 J/mol respectively, as compared to 6.576 × 103 J/mol for untreated leathers, showing increased thermal stability according to DSC measurements. The hydrothermal route for silica doped nanoparticle preparation proved advantages in enhancing photocatalytic properties in the visible domain and thermal resistance, with prospect for multifunctional applications

    Research and Science Today No. 2(6)/2013

    No full text
    RESEARCH AND SCIENCE TODAY is a biannual science journal established in 2011. The journal is an informational platform that publishes assessment articles and the results of various scientific research carried out by academics. We provide the authors with the opportunity to create and/or perfect their science writing skills. Thus, each issue of the journal (two per year and at least two supplements) will contain professional articles from any academic field, authored by domestic and international academics. The goal of this journal is to pass on relevant information to undergraduate, graduate, and post-graduate students as well as to fellow academics and researchers; the topics covered are unlimited, considering its multi-disciplinary profile. Regarding the national and international visibility of Research and Science Today, it is indexed in over 30 international databases (IDB) and is present in over 200 online libraries and catalogues; therefore, anybody can easily consult the articles featured in each issue by accessing the databases or simply the website

    Research and Science Today No. 2(4)/2012

    No full text
    RESEARCH AND SCIENCE TODAY is a biannual science journal established in 2011. The journal is an informational platform that publishes assessment articles and the results of various scientific research carried out by academics. We provide the authors with the opportunity to create and/or perfect their science writing skills. Thus, each issue of the journal (two per year and at least two supplements) will contain professional articles from any academic field, authored by domestic and international academics. The goal of this journal is to pass on relevant information to undergraduate, graduate, and post-graduate students as well as to fellow academics and researchers; the topics covered are unlimited, considering its multi-disciplinary profile. Regarding the national and international visibility of Research and Science Today, it is indexed in over 30 international databases (IDB) and is present in over 200 online libraries and catalogues; therefore, anybody can easily consult the articles featured in each issue by accessing the databases or simply the website

    Design, Fabrication and Characterization of a Low-Impedance 3D Electrode Array System for Neuro-Electrophysiology

    Get PDF
    Recent progress in patterned microelectrode manufacturing technology and microfluidics has opened the way to a large variety of cellular and molecular biosensor-based applications. In this extremely diverse and rapidly expanding landscape, silicon-based technologies occupy a special position, given their statute of mature, consolidated, and highly accessible areas of development. Within the present work we report microfabrication procedures and workflows for 3D patterned gold-plated microelectrode arrays (MEA) of different shapes (pyramidal, conical and high aspect ratio), and we provide a detailed characterization of their physical features during all the fabrication steps to have in the end a reliable technology. Moreover, the electrical performances of MEA silicon chips mounted on standardized connector boards via ultrasound wire-bonding have been tested using non-destructive electrochemical methods: linear sweep and cyclic voltammetry, impedance spectroscopy. Further, an experimental recording chamber package suitable for in vitro electrophysiology experiments has been realized using custom-design electronics for electrical stimulus delivery and local field potential recording, included in a complete electrophysiology setup, and the experimental structures have been tested on newborn rat hippocampal slices, yielding similar performance compared to commercially available MEA equipments

    Research and Science Today No. 1(5)/2013

    No full text
    RESEARCH AND SCIENCE TODAY is a biannual science journal established in 2011. The journal is an informational platform that publishes assessment articles and the results of various scientific research carried out by academics. We provide the authors with the opportunity to create and/or perfect their science writing skills. Thus, each issue of the journal (two per year and at least two supplements) will contain professional articles from any academic field, authored by domestic and international academics. The goal of this journal is to pass on relevant information to undergraduate, graduate, and post-graduate students as well as to fellow academics and researchers; the topics covered are unlimited, considering its multi-disciplinary profile. Regarding the national and international visibility of Research and Science Today, it is indexed in over 30 international databases (IDB) and is present in over 200 online libraries and catalogues; therefore, anybody can easily consult the articles featured in each issue by accessing the databases or simply the website
    corecore