862 research outputs found

    A supercritical series analysis for the generalized contact process with diffusion

    Full text link
    We study a model that generalizes the CP with diffusion. An additional transition is included in the model so that at a particular point of its phase diagram a crossover from the directed percolation to the compact directed percolation class will happen. We are particularly interested in the effect of diffusion on the properties of the crossover between the universality classes. To address this point, we develop a supercritical series expansion for the ultimate survival probability and analyse this series using d-log Pad\'e and partial differential approximants. We also obtain approximate solutions in the one- and two-site dynamical mean-field approximations. We find evidences that, at variance to what happens in mean-field approximations, the crossover exponent remains close to ϕ=2\phi=2 even for quite high diffusion rates, and therefore the critical line in the neighborhood of the multicritical point apparently does not reproduce the mean-field result (which leads to ϕ=0\phi=0) as the diffusion rate grows without bound

    BaFe12O19 single-particle-chain nanofibers : preparation, characterization, formation principle, and magnetization reversal mechanism

    Get PDF
    BaFe12O19 single-particle-chain nanofibers have been successfully prepared by an electrospinning method and calcination process, and their morphology, chemistry, and crystal structure have been characterized at the nanoscale. It is found that individual BaFe12O19 nanofibers consist of single nanoparticles which are found to stack along the nanofiber axis. The chemical analysis shows that the atomic ratio of Ba/Fe is 1:12, suggesting a BaFe12O19 composition. The crystal structure of the BaFe12O19 single-particle-chain nanofibers is proved to be M-type hexagonal. The single crystallites on each BaFe12O19 single-particlechain nanofibers have random orientations. A formation mechanism is proposed based on thermogravimetry/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) at six temperatures, 250, 400, 500, 600, 650, and 800 �C. The magnetic measurement of the BaFe12O19 single-particle-chain nanofibers reveals that the coercivity reaches a maximum of 5943 Oe and the saturated magnetization is 71.5 emu/g at room temperature. Theoretical analysis at the micromagnetism level is adapted to describe the magnetic behavior of the BaFe12O19 single-particle-chain nanofibers

    Spin-Atomic Vibration Interaction and Spin-Flip Hamiltonian of a Single Atomic Spin in a Crystal Field

    Full text link
    We derive the spin-atomic vibration interaction VSAV_{\rm SA} and the spin-flip Hamiltonian VSFV_{\rm SF} of a single atomic spin in a crystal field. We here apply the perturbation theory to a model with the spin-orbit interaction and the kinetic and potential energies of electrons. The model also takes into account the difference in vibration displacement between an effective nucleus and electrons, \Delta {{\boldmath r}}. Examining the coefficients of VSAV_{\rm SA} and VSFV_{\rm SF}, we first show that VSAV_{\rm SA} appears for \Delta {{\boldmath r}}\ne0, while VSFV_{\rm SF} is present independently of \Delta {{\boldmath r}}. As an application, we next obtain VSAV_{\rm SA} and VSFV_{\rm SF} of an Fe ion in a crystal field of tetragonal symmetry. It is found that the magnitudes of the coefficients of VSAV_{\rm SA} can be larger than those of the conventional spin-phonon interaction depending on vibration frequency. In addition, transition probabilities per unit time due to VSAV_{\rm SA} and VSFV_{\rm SF} are investigated for the Fe ion with an anisotropy energy of DSZ2-|D|S_Z^2, where DD is an anisotropy constant and SZS_Z is the ZZ component of a spin operator.Comment: 55 pages, 17 figures, to be published in J. Phys. Soc. Jpn. 79 (2010) No. 11, typos correcte

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere

    A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients

    Get PDF
    Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al

    A way to synchronize models with seismic faults for earthquake forecasting: Insights from a simple stochastic model

    Full text link
    Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual fault or fault network it simulates (just as, for example, meteorologists synchronize their models with the atmosphere by incorporating current atmospheric data in them). However, lithospheric dynamics is largely unobservable: important parameters cannot (or can rarely) be measured in Nature. Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models. The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized with the first one. We use these partially synchronized models to successfully forecast most of the largest earthquakes generated by the first model. This forecasting strategy outperforms others that only take into account the earthquake series. Our results suggest that probably a good way to synchronize more detailed models with real faults is to force them to reproduce the sequence of previous earthquake ruptures on the faults. This hypothesis could be tested in the future with more detailed models and actual seismic data.Comment: Revised version. Recommended for publication in Tectonophysic

    The role of the RACK1 ortholog Cpc2p in modulating pheromone-induced cell cycle arrest in fission yeast

    Get PDF
    The detection and amplification of extracellular signals requires the involvement of multiple protein components. In mammalian cells the receptor of activated C kinase (RACK1) is an important scaffolding protein for signal transduction networks. Further, it also performs a critical function in regulating the cell cycle by modulating the G1/S transition. Many eukaryotic cells express RACK1 orthologs, with one example being Cpc2p in the fission yeast Schizosaccharomyces pombe. In contrast to RACK1, Cpc2p has been described to positively regulate, at the ribosomal level, cells entry into M phase. In addition, Cpc2p controls the stress response pathways through an interaction with Msa2p, and sexual development by modulating Ran1p/Pat1p. Here we describe investigations into the role, which Cpc2p performs in controlling the G protein-mediated mating response pathway. Despite structural similarity to Gβ-like subunits, Cpc2p appears not to function at the G protein level. However, upon pheromone stimulation, cells overexpressing Cpc2p display substantial cell morphology defects, disorientation of septum formation and a significantly protracted G1 arrest. Cpc2p has the potential to function at multiple positions within the pheromone response pathway. We provide a mechanistic interpretation of this novel data by linking Cpc2p function, during the mating response, with its previous described interactions with Ran1p/Pat1p. We suggest that overexpressing Cpc2p prolongs the stimulated state of pheromone-induced cells by increasing ste11 gene expression. These data indicate that Cpc2p regulates the pheromone-induced cell cycle arrest in fission yeast by delaying cells entry into S phase

    Angioscopic Evaluation of Neointimal Coverage of Coronary Stents

    Get PDF
    Drug-eluting stents (DES) reduce coronary restenosis significantly; however, late stent thrombosis (LST) occurs, which requires long-term antiplatelet therapy. Angioscopic grading of neointimal coverage of coronary stent struts was established, and it was revealed that neointimal formation is incomplete and prevalence of LST is higher in DES when compared to bare-metal stents. It was also observed that the neointima is thicker and LST is less frequent in paclitaxel-eluting and zotarolimus-eluting stents than in sirolimus-eluting stents. Many new stents were devised and they are now under experimental or clinical investigations to overcome the shortcomings of the stents that have been employed clinically. Endothelial cells are highly anti-thrombotic. Neo-endothelial cell damage is considered to be caused by friction between the cells and stent struts due to the thin neointima between them which might act as a cushion. Therefore, development of a DES that causes an appropriate thickness (around 100 μm) of the neointima is a potential option with which to prevent neo-endothelial cell damage and consequent LST while preventing restenosis

    Effect of Ca2+ Channel Block on Glycerol Metabolism in Dunaliella salina under Hypoosmotic and Hyperosmotic Stresses

    Get PDF
    The effect of Ca2+ channel blockers on cytosolic Ca2+ levels and the role of Ca2+ in glycerol metabolism of Dunaliella salina under hypoosmotic or hyperosmotic stress were investigated using the confocal laser scanning microscope (CLSM). Results showed that intracellular Ca2+ concentration increased rapidly when extracellular salinity suddenly decreased or increased, but the increase could be inhibited by pretreatment of Ca2+ channel blockers LaCl3, verapamil or ruthenium red. The changes of glycerol content and G3pdh activity in D. salina to respect to hypoosmotic or hyperosmotic stress were also inhibited in different degrees by pretreatment of Ca2+ channel blockers, indicating that the influx of Ca2+ via Ca2+ channels are required for the transduction of osmotic signal to regulate osmotic responses of D. salina to the changes of salinity. Differences of the three blockers in block effect suggested that they may act on different channels or had different action sites, including influx of Ca2+ from the extracellular space via Ca2+ channels localized in the plasma membrane or from intracellular calcium store via the mitochondrial. Other Ca2+-mediated or non-Ca2+-mediated osmotic signal pathway may exist in Dunaliella in response to hypoosmotic and hyperosmotic stresses
    corecore