539 research outputs found

    Large amplitude oscillatory motion along a solar filament

    Full text link
    Large amplitude oscillations of solar filaments is a phenomenon known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory Hα\alpha filtergrams, in order to infer the triggering mechanism and the nature of the restoring force. Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function, to estimate the basic parameters of the oscillations. In order to identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. The observed oscillations of the plasma along the filament was characterized by an initial displacement of 24 Mm, initial velocity amplitude of 51 km/s, period of 50 min, and damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux injection by magnetic reconnection at one of the filament legs. The restoring force is caused by the magnetic pressure gradient along the filament axis. The period of oscillations, derived from the linearized equation of motion (harmonic oscillator) can be expressed as P=π2L/vAϕ4.4L/vAϕP=\pi\sqrt{2}L/v_{A\phi}\approx4.4L/v_{A\phi}, where vAϕ=Bϕ0/μ0ρv_{A\phi} =B_{\phi0}/\sqrt{\mu_0\rho} represents the Alfv\'en speed based on the equilibrium poloidal field Bϕ0B_{\phi0}. Combination of our measurements with some previous observations of the same kind of oscillations shows a good agreement with the proposed interpretation.Comment: Astron. Astrophys., 2007, in pres

    Three-Dimensional Propagation of Magnetohydrodynamic Waves in Solar Coronal Arcades

    Full text link
    We numerically investigate the excitation and temporal evolution of oscillations in a two-dimensional coronal arcade by including the three-dimensional propagation of perturbations. The time evolution of impulsively generated perturbations is studied by solving the linear, ideal magnetohydrodynamic (MHD) equations in the zero-beta approximation. As we neglect gas pressure the slow mode is absent and therefore only coupled MHD fast and Alfven modes remain. Two types of numerical experiments are performed. First, the resonant wave energy transfer between a fast normal mode of the system and local Alfven waves is analyzed. It is seen how, because of resonant coupling, the fast wave with global character transfers its energy to Alfvenic oscillations localized around a particular magnetic surface within the arcade, thus producing the damping of the initial fast MHD mode. Second, the time evolution of a localized impulsive excitation, trying to mimic a nearby coronal disturbance, is considered. In this case, the generated fast wavefront leaves its energy on several magnetic surfaces within the arcade. The system is therefore able to trap energy in the form of Alfvenic oscillations, even in the absence of a density enhancement such as that of a coronal loop. These local oscillations are subsequently phase-mixed to smaller spatial scales. The amount of wave energy trapped by the system via wave energy conversion strongly depends on the wavelength of perturbations in the perpendicular direction, but is almost independent from the ratio of the magnetic to density scale heights.Comment: 27 pages, 11 figure

    Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    Get PDF
    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20–100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles

    Micro/nanostructures formation by femtosecond laser surface processing on amorphous and polycrystalline Ni60Nb40

    Get PDF
    Femtosecond laser surface processing is a technology that can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, below surface growth (BSG) and above surface growth (ASG) mounds, were formed by femtosecond laser surface processing on amorphous and polycrystalline Ni60Nb40 with two different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the unique formation processes for each class of surface structure. BSG mounds formed on all three substrates using the same laser parameters had similar surface morphology. The microstructures in the mounds were unaltered compared with the substrate before laser processing, suggesting their formation was dominated by preferential valley ablation. ASG mounds had similar morphology when formed on the polycrystalline Ni60Nb40 substrates with 100 nm and 2 [H9262]m grain size. However, the ASG mounds had significantly wider diameter and higher peak-to-valley heights when the substrate was amorphous Ni60Nb40. Hydrodynamic melting was primarily responsible for ASG mound formation. On amorphous Ni60Nb40 substrates, the ASG mounds are most likely larger due to lower thermal diffusivity. There was clear difference in growth mechanism of femtosecond laser processed BSG and ASG mounds, and grain size does not appear to be a factor

    The complete mitochondrial genome of the broad-winged damselfly <i>Mnais costalis</i> Selys (Odonata: Calopterygidae) obtained by next-generation sequencing

    Get PDF
    <p>We used next-generation sequencing to characterise the complete mitochondrial genome of the damselfly <i>Mnais costalis</i> (Odonata, Calopterygidae). Illumina paired end reads were mapped against COI and 16S sequences from <i>M. costalis</i> and then extended using an iterative <i>de novo</i> map procedure. The final assembly was a contiguous sequence of 15,487 bp, which contained all standard mitochondrial coding regions and the putative A+T rich region. The gene configuration of the <i>M. costalis</i> mitogenome is similar to that of other odonates, comprising 13 protein-coding genes, large and small rRNA genes, and 22 tRNA genes. We found three intergenic spacers that are also present in all available whole odonate mitogenomes. Base composition of the <i>M. costalis</i> mitogenome is 40% (A), 20% (C), 14% (G) and 26% (T), with a high A+T content (66%). The characterisation of the complete mitochondrial genome of <i>M. costalis</i> adds to the growing list of mitogenomes currently available for odonates, and will help to improve primer design for future population genetic studies. A phylogenetic analysis including the currently available mitochondrial genome sequences of odonates suggests that <i>Epiophlebia superstes</i> is more closely related to the Zygoptera than to the Anisoptera.</p

    Small Scale Clustering in the Isotropic Arrival Distribution of Ultra-High Energy Cosmic Rays and Implications for Their Source Candidates

    Full text link
    We present numerical simulations on the propagation of UHE protons with energies of (1019.51022)(10^{19.5}-10^{22}) eV in extragalactic magnetic fields over 1 Gpc. We use the ORS galaxy sample, which allow us to accurately quantify the contribution of nearby sources to the energy spectrum and the arrival distribution, as a source model. We calculate three observable quantities, cosmic ray spectrum, harmonic amplitude, and two point correlation function from our data of numerical simulations. With these quantities, we compare the results of our numerical calculations with the observation. We show that the three observable quantities including the GZK cutoff of the energy spectrum can be reproduced in the case that the number fraction 101.7\sim 10^{-1.7} of the ORS galaxies more luminous than -20.5 mag is selected as UHECR sources. In terms of the source number density, this constraint corresponds to 10610^{-6} Mpc3^{-3}. However, since mean number of sources within the GZK sphere is only 0.5\sim 0.5 in this case, the AGASA 8 events above 1020.010^{20.0} eV, which do not constitute the clustered events with each other, can not be reproduced. On the other hand, if the cosmic ray flux measured by the HiRes, which is consistent with the GZK cutoff, is correct and observational features about the arrival distribution of UHECRs are same as the AGASA, our source model can explain both the arrival distribution and the flux at the same time. Thus, we conclude that large fraction of the AGASA 8 events above 102010^{20} eV might originate in the topdown scenarios, or that the cosmic ray flux measured by the HiRes experiment might be better. We also discuss the origin of UHECRs below 1020.010^{20.0} eV through comparisons between the number density of astrophysical source candidates and our result (106\sim 10^{-6} Mpc3^{-3}).Comment: 17 pages, 22 figures, 1 table. accepted version for publication in the Astrophysical Journa

    Magnetohydrodynamic kink waves in two-dimensional non-uniform prominence threads

    Get PDF
    We analyse the oscillatory properties of resonantly damped transverse kink oscillations in two-dimensional prominence threads. The fine structures are modelled as cylindrically symmetric magnetic flux tubes with a dense central part with prominence plasma properties and an evacuated part, both surrounded by coronal plasma. The equilibrium density is allowed to vary non-uniformly in both the transverse and the longitudinal directions.We examine the influence of longitudinal density structuring on periods, damping times, and damping rates for transverse kink modes computed by numerically solving the linear resistive magnetohydrodynamic (MHD) equations. The relevant parameters are the length of the thread and the density in the evacuated part of the tube, two quantities that are difficult to directly estimate from observations. We find that both of them strongly influence the oscillatory periods and damping times, and to a lesser extent the damping ratios. The analysis of the spatial distribution of perturbations and of the energy flux into the resonances allows us to explain the obtained damping times. Implications for prominence seismology, the physics of resonantly damped kink modes in two-dimensional magnetic flux tubes, and the heating of prominence plasmas are discussed.Comment: 12 pages, 9 figures, A&A accepte

    Core electron densities of coronal polar plumes

    Full text link
    The electron density in the cores of coronal polar plumes that is determined from observations will depend upon the assumed electron density distribution through the plume in a direction normal to its axis. Core electron densities obtained by Saito (1965) and by Newkirk and Harvey (1968) were derived using different assumed electron density profiles, and are not in agreement. We have re-discussed Saito's data using Newkirk and Harvey's electron density profile and find that the disagreement persists. Whether this indicates a true variation in electron density in plume cores cannot now be stated. Errors in the electron densities derived here may arise through errors in measuring the angles θ and α which enter into the analysis. While plausible variations in θ produce no appreciable errors in core electron density, plausible variations in α may introduce appreciable errors into the determinations of that quantity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43726/1/11207_2004_Article_BF00153112.pd

    Damping mechanisms for oscillations in solar prominences

    Full text link
    Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also present. The existing observational evidence reveals that small amplitude oscillations, after excited, are damped in short spatial and temporal scales by some as yet not well determined physical mechanism(s). Commonly, these oscillations have been interpreted in terms of linear magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping mechanisms that have been recently put forward in order to explain the observed attenuation scales. These mechanisms include thermal effects, through non-adiabatic processes, mass flows, resonant damping in non-uniform media, and partial ionization effects. The relevance of each mechanism is assessed by comparing the spatial and time scales produced by each of them with those obtained from observations. Also, the application of the latest theoretical results to perform prominence seismology is discussed, aiming to determine physical parameters in prominence plasmas that are difficult to measure by direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
    corecore