7 research outputs found

    THERMO-VISCOELASTIC CHARACTERIZATION OF POLYMER LAMINATE FILMS

    Get PDF
    The investigated material - laminate is intended as a substrate for small electronic components, electrodes and printed circuits, which are processed onto the laminate prior to thermoforming. The placement of the electronic components and the connecting circuits must be carefully designed to prevent damage during the thermoforming. The thermo-viscoelastic behavior of a polymer laminate film was characterized by mechanical measurements to obtain data for material modeling. The strain was measured using digital image correlation. The film is anisotropic and is able to deform to strains up to 60%

    Indentation unloading phase transformations in silicon: A new perspective

    Get PDF
    nanoindentation, silicon, Berkovich, contact pressure, continuous stiffness measuremen

    Collapse of a molecular cloud core to stellar densities: stellar core and outflow formation in radiation magnetohydrodynamics simulations (dataset)

    Get PDF
    This repository contains the datasets from the original smoothed particle hydrodynamics (SPH) calculations for the associated paper, including most dump files. It also includes all of the scripts for generating the figures that appear in the paper. These are contained either in the Figure_Generation.zip file or in the Paper.zip file. The former mainly contains SPLASH scripts (see below) for generating images from the SPH dump files. The latter mainly contains the final (or intermediate) SPLASH figures, plus the data files and scripts for making the other figures (line plots). Line plots use supermongo scripts. There are 5 main SPH calculations discussed in the paper, using 3 million SPH particles (3M) and with magnetic mass-to-flux ratios of 5, 10, 20, 100, and infinity (e.g. MF05). The outputs from each calculation are found in the zip files that begin with RMHD_MF*. For example, RMHD_MF05_3M.zip contains all the output (and executable) from the 3 million particle calculation with mass-to-flux ratio 5, except the dump files. The dump files are contained in a series of zip files such as: RMHD_MF05_3M_0200_0219.zip which contains 20 dump files, numbers 200 to 219. The dump files are included in groups to allow downloads in reasonably small (~20 GB) chunks, since the entire repository is ~3 TB. Also included is the output from the 1 million particle, mass-to-flux ratio 5 calculation (which was used for resolution testing in the Appendix of the paper). Only the single dump file from the 10 million particle calculation which was used to generate figure 22 is included in the respository (within the Figure_Generation.zip file) because the dump files from the entire calculation occupied another 1 TB of disk space. The SPH dump files for each calculation begin at TEST000 at time zero and then are numbered sequentially. The spacing in time is not regular (it generally decreases). The SPH dump files are Fortran binary files, written in big endian format and generated by the sphNG code. They can be read, visualised, and manipulated using the free, publicly available SPLASH visualisation code (which reads sphNG dump files), written by Daniel Price, that can be downloaded from: http://users.monash.edu.au/~dprice/splash/ Finally, the MovieAll.zip file contains the SPLASH scripts for generating the density movies associated with the paper that can be found at: http://www.astro.ex.ac.uk/people/mbate/Animations/stellarcore.htmlThis is the dataset that was used to produce the paper published in MNRAS. It contains the output from each of the SPH simulations, including dump files and the scripts used to generate the figures for the paper. To view the paper follow the DOI above or http://hdl.handle.net/10871/14622University of Exeter Visiting International Academic FellowshipMonash UniversityAustralian Research Council Discovery Project GrantEndeavour IPRS and APA postgraduate research scholarshipsUniversity of Exeter Supercomputer: jointly funded by Science and Technology Facilities Council (STFC), Large Facilities Capital Fund of BIS, and the University of ExeterDiRac Complexity computer: jointly funded by Science and Technology Facilities Council (STFC) and the Large Facilities Capital Fund of BI

    THERMO-VISCOELASTIC CHARACTERIZATION OF POLYMER LAMINATE FILMS

    No full text
    The investigated material - laminate is intended as a substrate for small electronic components, electrodes and printed circuits, which are processed onto the laminate prior to thermoforming. The placement of the electronic components and the connecting circuits must be carefully designed to prevent damage during the thermoforming. The thermo-viscoelastic behavior of a polymer laminate film was characterized by mechanical measurements to obtain data for material modeling. The strain was measured using digital image correlation. The film is anisotropic and is able to deform to strains up to 60%

    Exploring the high-temperature deformation behavior of monocrystalline silicon – An advanced nanoindentation study

    No full text
    Knowing the mechanical behavior of silicon at elevated temperatures is crucial for many high-temperature applications and processes. This work aims to expand the knowledge of these properties, especially on length scales relevant to miniaturized silicon structures. Therefore, nanoindentation experiments were performed on two differently doped (1 0 0) silicon wafers with varying oxygen content, from room temperature up to 950 °C. Residual impressions were microscopically characterized via confocal laser scanning microscopy. From this dataset covering an exceptionally large temperature range the elastic modulus and hardness as well as strain rate sensitivity, activation volume, and energy were evaluated. Generally, a change in deformation behavior can be identified between 300 °C and 400 °C. Above this transition temperature, the hardness drops exponentially. Also, the material becomes strain rate sensitive. These observations support the assumption that the deformation mechanism shifts from high-pressure phase transformation to dislocation-controlled plasticity with increasing temperature. Furthermore, a change in strain rate sensitivity, activation energy, and activation volume above 800 °C implies a further shift in the rate-controlling mechanism of dislocation motion. Lastly, the more strongly doped sample with the higher oxygen content showing higher mechanical strength is discussed regarding solid-solution strengthening and dislocation locking by oxygen atoms
    corecore