51 research outputs found

    Durable response to palbociclib and letrozole in ovarian cancer with CDKN2A loss.

    Get PDF
    Alterations of the Retinoblastoma (Rb) pathway are frequent in ovarian cancer, typically resulting from CDKN2A down-regulation, CCNE1 amplification, CCND1/2 amplification, and RB1 loss. However, bi-allelic CDKN2A mutation or homozygous deletion is a very rare event, concerning less than 5% of patients.Initial trials with palbociclib in serous ovarian cancer have shown very modest benefit in unselected patient populations, thus underlining the need for a biomarker predicting response. We report the case of a heavily pre-treated patient with a serous ovarian tumor harboring a homozygous deletion of the CDKN2A gene that derived significant, prolonged clinical benefit from palbociclib, a CDK4/6 oral inhibitor, with letrozole. Treatment with palbociclib and letrozole started on February 2018, with an ongoing response after 12 months.In conclusion, homozygous CDKN2A deletion is rare and could be used to predict response to CDK4/6 inhibitors in association with other genomic features. We encourage further trials in this direction

    Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis.

    Get PDF
    Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells

    The RIP140 Gene Is a Transcriptional Target of E2F1

    Get PDF
    RIP140 is a transcriptional coregulator involved in energy homeostasis and ovulation which is controlled at the transcriptional level by several nuclear receptors. We demonstrate here that RIP140 is a novel target gene of the E2F1 transcription factor. Bioinformatics analysis, gel shift assay, and chromatin immunoprecipitation demonstrate that the RIP140 promoter contains bona fide E2F response elements. In transiently transfected MCF-7 breast cancer cells, the RIP140 promoter is transactivated by overexpression of E2F1/DP1. Interestingly, RIP140 mRNA is finely regulated during cell cycle progression (5-fold increase at the G1/S and G2/M transitions). The positive regulation by E2F1 requires sequences located in the proximal region of the promoter (−73/+167), involves Sp1 transcription factors, and undergoes a negative feedback control by RIP140. Finally, we show that E2F1 participates in the induction of RIP140 expression during adipocyte differentiation. Altogether, this work identifies the RIP140 gene as a new transcriptional target of E2F1 which may explain some of the effect of E2F1 in both cancer and metabolic diseases

    Are common fragile sites merely structural domains or highly organized "functional" units susceptible to oncogenic stress?

    No full text
    Common fragile sites (CFSs) are regions of the genome with a predisposition to DNA double-strand breaks in response to intrinsic (oncogenic) or extrinsic replication stress. CFS breakage is a common feature in carcinogenesis from its earliest stages. Given that a number of oncogenes and tumor suppressors are located within CFSs, a question that emerges is whether fragility in these regions is only a structural "passive" incident or an event with a profound biological effect. Furthermore, there is sparse evidence that other elements, like non-coding RNAs, are positioned with them. By analyzing data from various libraries, like miRbase and ENCODE, we show a prevalence of various cancer-related genes, miRNAs, and regulatory binding sites, such as CTCF within CFSs. We propose that CFSs are not only susceptible structural domains, but highly organized "functional" entities that when targeted, severe repercussion for cell homeostasis occurs. © 2014 The Author(s)

    Relationship of the K-ras/c-mos expression patterns with angiogenesis in non-small cell lung carcinomas.

    No full text
    BACKGROUND: Neo-angiogenesis is an acquired capability vital for a tumor to grow and metastasize. Evidence has shown that the mitogen-activated protein (MAP) kinase pathway is involved in this process. Alterations of K-ras and c-mos, two pivotal components of this pathway, have been implicated in non-small cell lung carcinogenesis. In the present report, we examine, in a series of non-small cell lung carcinomas (NSCLCs), the status of K-ras and c-mos oncoproteins in correlation with the tumor neo-angiogenesis state and the major angiogenic factor, vascular endothelial growth factor (VEGF). MATERIALS AND METHODS: c-mos and p-ERK1/2 status was evaluated immunohistochemically in a total of 65 NSCLCs, whereas the presence of K-ras mutations was examined by reverse transcriptase-polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) in available matched normal tumor material from 56 cases. Microvessel density (MVD) was estimated by immunodetection of CD3, endothelial marker, and VEGF expression was assessed by immunohistochemistry. All possible associations were examined by a series of statistical methods. RESULTS: Expression of oncogenic activated K-ras and c-mos overexpression was observed in 12 of 49 (25%) and in 16 of 61 (26%) informative cases, respectively. Only 1 of the 25 deregulated for K-ras or c-mos cases exhibited both alterations, suggesting a mutually exclusive relationship between activated K-ras and c-mos overexpression (p = 0.074) in a subset of NSCLCs. In these cases, the MAPK kinase kinase/MEK/ERK pathway was found to be activated. MVD and VEGF expression were 36.9 +/- 10.6 mv/mm2 and 73.1 +/- 20.0%, respectively. The most intriguing finding was that the [K-ras(No)/c-mos(P)] profile was significantly associated with low MVD levels compared to normal cases (p = 0.004); by contrast, no correlation was found between the other K-ras/c-mos patterns and MVD. Furthermore, the former group exhibited the lowest VEGF levels. CONCLUSIONS: The mutually exclusive relationship between mutated K-ras and c-mos overexpression in a subset of NSCLCs implies a common signal transduction pathway in lung carcinogenesis. The effect of this pathway on NSCLC neo-angiogenesis seems to depend upon the status of c-mos, which acts as a molecular "switch," possibly exerting a negative selective pressure on tumor progression

    Prospective validation in epithelial tumors of a gene expression predictor of liver metastasis derived from uveal melanoma.

    Get PDF
    Predicting the risk of liver metastasis can have important prognostic and therapeutic implications, given the availability of liver-directed therapy. Uveal melanoma has a striking predisposition for liver metastasis despite the absence of anatomical proximity. Understanding its biology may uncover factors promoting liver metastasis in other malignancies. We quantified gene expression by RNAseq in 76 uveal melanomas and combined with public data in a meta-analysis of 196 patients. The meta-analysis of uveal melanoma gene expression identified 63 genes which remained prognostic after adjustment for chromosome 3 status. Two genes, PTP4A3 and JPH1, were selected by L1-penalized regression and combined in a prognostic score. The score predicted liver-specific relapse in a public pan-cancer dataset and in two public colorectal cancer datasets. The score varied between colorectal consensus molecular subtypes (CMS), as did the risk of liver relapse, which was lowest in CMS1. Additional prospective validation was done by real-time PCR in 463 breast cancer patients. The score was significantly correlated with liver relapse in hormone receptor positive tumors. In conclusion, the expression of PTP4A3 and JPH1 correlates with risk of liver metastasis in colorectal cancer and breast cancer. The underlying biological mechanism is an interesting area for further research

    Interferon-a2b reduces neo-microvascular density in the `normal' urothelium adjacent to the tumor after transurethral resection of superficial bladder carcinoma

    No full text
    Backround: As angiogenesis represents one of the hallmarks of cancer we investigated whether intravesicaly administered interferon-a (IFN-a2b) reduces neo-angiogenesis in the ‘normal’ urothelium adjacent to the tumor in patients with superficial bladder carcinoma after complete transurethral resection (TUR) of the tumor. Patients and Methods: In the present study 47 patients after TUR of the tumor were examined. 10 patients (group A) received no further treatment (control group); 37 patients (group B) received intravesical treatment with IFN-a2b. The instillations started within 7 days after TUR, were performed weekly for 2 months, twice a month for the next 4 months, and thereafter monthly for 6 more months. Cold cup biopsies were taken before TUR of the transitional cell carcinoma (TCC): from the tumor (T), near tumor (NT) and from normal epithelium N. Cold cup biopsies ‘near tumor’, were also taken during follow-up cystoscopy (C1, C2, and C3) 2, 6, and 12 months after TUR, respectively. Angiogenesis was estimated by counting the microvessels detected with CD31 immunostaining. Results: Significant differences of microvascular density (MVD) between patients of group A and B appear after TUR (p<0.005, Kruskal-Wallis and Wilcoxon test). The MVD difference was maximal 6 months after TUR (C2(A)-C2(B), second cystoscopy) and measured at 12.17 microvessels/mm(2) (26.2%). Conclusion: Our results show that the intravesical administration of IFN-a2b after TUR significantly decreases the angiogenic potential of the ‘healthy’ urothelium adjacent to the tumor in patients with TCC. This observation could possibly explain, to a certain extent, the mechanism by which IFN-a2b reduces the recurrence rate of primary TCC
    corecore