14 research outputs found

    Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables

    Get PDF
    Background The conventional measurement of obesity utilises the body mass index (BMI) criterion. Although there are benefits to this method, there is concern that not all individuals at risk of obesity-associated medical conditions are being identified. Whole-body fat percentage (%FM), and specifically visceral adipose tissue (VAT) mass, are correlated with and potentially implicated in disease trajectories, but are not fully accounted for through BMI evaluation. The aims of this study were (a) to compare five anthropometric predictors of %FM and VAT mass, and (b) to explore new cut-points for the best of these predictors to improve the characterisation of obesity. Methods BMI, waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR) and waist/height0.5 (WHT.5R) were measured and calculated for 81 adults (40 women, 41 men; mean (SD) age: 38.4 (17.5) years; 94% Caucasian). Total body dual energy X-ray absorptiometry with Corescan (GE Lunar iDXA, Encore version 15.0) was also performed to quantify %FM and VAT mass. Linear regression analysis, stratified by sex, was applied to predict both %FM and VAT mass for each anthropometric variable. Within each sex, we used information theoretic methods (Akaike Information Criterion; AIC) to compare models. For the best anthropometric predictor, we derived tentative cut-points for classifying individuals as obese (>25% FM for men or >35% FM for women, or > highest tertile for VAT mass). Results The best predictor of both %FM and VAT mass in men and women was WHtR. Derived cut-points for predicting whole body obesity were 0.53 in men and 0.54 in women. The cut-point for predicting visceral obesity was 0.59 in both sexes. Conclusions In the absence of more objective measures of central obesity and adiposity, WHtR is a suitable proxy measure in both women and men. The proposed DXA-%FM and VAT mass cut-offs require validation in larger studies, but offer potential for improvement of obesity characterisation and the identification of individuals who would most benefit from therapeutic intervention

    Exercise dose and all-cause mortality within extended cardiac rehabilitation: a cohort study.

    Get PDF
    AIMS: To investigate the relationship between exercise participation, exercise 'dose' expressed as metabolic equivalent (MET) hours (h) per week, and prognosis in individuals attending an extended, community-based exercise rehabilitation programme. METHODS: Cohort study of 435 participants undertaking exercise-based cardiac rehabilitation (CR) in Leeds, West Yorkshire, UK between 1994 and 2006, followed up to 1 November 2013. MET intensity of supervised exercise was estimated utilising serial submaximal exercise test results and corresponding exercise prescriptions. Programme participation was routinely monitored. Cox regression analysis including time-varying and propensity score adjustment was applied to identify predictors of long-term, all-cause mortality across exercise dose and programme duration groups. RESULTS: There were 133 events (31%) during a median follow-up of 14 years (range, 1.2 to 18.9 years). The significant univariate association between exercise dose and all-cause mortality was attenuated following multivariable adjustment for other predictors, including duration in the programme. Longer-term adherence to supervised exercise training (>36 months) was associated with a 33% lower mortality risk (multivariate-adjusted HR: 0.67; 95% CI: 0.47 to 0.97; p=0.033) compared with all lesser durations of CR (3, 12, 36 months), even after adjustment for baseline fitness, comorbidities and survivor bias. CONCLUSION: Exercise dose (MET-h per week) appears less important than long-term adherence to supervised exercise for the reduction of long-term mortality risk. Extended, supervised CR programmes within the community may play a key role in promoting long-term exercise maintenance and other secondary prevention therapies for survival benefit

    Submaximal fitness and mortality risk reduction in coronary heart disease: a retrospective cohort study of community-based exercise rehabilitation.

    Get PDF
    To examine the association between submaximal cardiorespiratory fitness (sCRF) and all-cause mortality in a cardiac rehabilitation (CR) cohort.Retrospective cohort study of participants entering CR between 26 May 1993 and 16 October 2006, followed up to 1 November 2013 (median 14 years, range 1.2-19.4 years).A community-based CR exercise programme in Leeds, West Yorkshire, UK.A cohort of 534 men (76%) and 136 women with a clinical diagnosis of coronary heart disease (CHD), aged 22-82 years, attending CR were evaluated for the association between baseline sCRF and all-cause mortality. 416 participants with an exercise test following CR (median 14 weeks) were examined for changes in sCRF and all-cause mortality.All-cause mortality and change in sCRF expressed in estimated metabolic equivalents (METs).Baseline sCRF was a strong predictor of all-cause mortality; compared to the lowest sCRF group (<5 METs for women and <6 METs for men), mortality risk was 41% lower in those with moderate sCRF (HR 0.59; 95% CI 0.42 to 0.83) and 60% lower (HR 0.40; 95% CI 0.25 to 0.64) in those with higher sCRF levels (≥7 METs women and ≥8 METs for men). Although improvement in sCRF at 14 weeks was not associated with a significant mortality risk reduction (HR 0.91; 95% CI 0.79 to 1.06) for the whole cohort, in those with the lowest sCRF (and highest all-cause mortality) at baseline, each 1-MET improvement was associated with a 27% age-adjusted reduction in mortality risk (HR 0.73; 95% CI 0.57 to 0.94).Higher baseline sCRF is associated with a reduced risk of all-cause mortality over 14 years in adults with CHD. Improving fitness through exercise-based CR is associated with significant risk reduction for the least fit

    UK Cardiac Rehabilitation fit for purpose?: a community-based observational cohort study

    Get PDF
    Objectives This study aimed to characterise the exercise performed in UK cardiac rehabilitation (CR) and explore relationships between exercise dose and changes in physiological variables. Design Observational cohort study. Setting Outpatient community-based CR in Leeds, UK. Rehabilitation sessions were provided twice per week for 6 weeks. Participants Sixty patients (45 male/15 female 33–86 years) were recruited following referral to local outpatient CR. Outcome measures The primary outcome was heart rate achieved during exercise sessions. Secondary outcomes were measured before and after CR and included incremental shuttle walk test (ISWT) distance and speed, blood pressure, brachial artery flow-mediated dilatation, carotid arterial stiffness and accelerometer-derived habitual physical activity behaviours. Results The mean % of heart rate reserve patients exercised at was low and variable at the start of CR (42%±16 %) and did not progress by the middle (48%±17 %) or end (48%±16 %) of the programme. ISWT performance increased following CR (440±150 m vs 633±217 m, p0.05). Conclusion Patients in a UK CR cohort exercise at intensities that are variable but generally low. The exercise dose achieved using this CR format appears inadequate to impact markers of health. Attending CR had no effect on physical activity behaviours. Strategies to increase the dose of exercise patients achieve during CR and influence habitual physical activity behaviours may enhance the effectiveness of UK CR

    ACSM pre-participation health screening guidelines: a UK university cohort perspective.

    Get PDF
    PURPOSE: Pre-participation health screening is recommended to detect individuals susceptible to serious adverse cardiovascular complications during exercise. Although expert opinion and best available scientific evidence have informed recent modifications, there remains limited experimental data to support or refute current practice. We therefore aimed to quantify the impact of change to the ACSM pre-participation health screening guidelines on risk classification and referral for medical clearance in a large cohort of undergraduate university students. METHODS: Participants attended the laboratory on a single occasion to undergo pre-participation health screening. Information concerning health status was obtained via self-report questionnaire and objective physiological assessment with all data recorded electronically and evaluated against ACSM screening guidelines (9 and 10 Edition). RESULTS: Five-hundred and fifty-three students completed the study. The 9th Edition screening guidance resulted in eighty-two (15%) subjects classified as high-risk, almost one quarter (24%) classified as moderate-risk, and almost two-thirds (61%) classified as low-risk. In comparison, the updated 10 Edition screening guidance resulted in a significant reduction in those previously classified as either high-risk (5%) or moderate risk (2%), respectively. The majority of subjects (93%) were therefore cleared to begin a structured exercise programme. Taken together, approximately one-third (32%) fewer medical referrals were required when applying the updated 10 Edition guidance (χ (4) = 247.7, P<0.001). CONCLUSION: The updated ACSM 10 Edition pre-participation screening guidance reduces medical referrals by approximately one-third. These findings are in keeping with previous reports and thus serve to consolidate and justify recent modification - particularly when applied to young adult or adolescent populations. The findings and arguments presented should be used to refine and inform future guidance

    The impact of different forms of exercise on endothelial progenitor cells in healthy populations

    Get PDF
    Circulating endothelial progenitor cells (EPCs) contribute to vascular healing and neovascularisation, while exercise is an effective means to mobilise EPCs into the circulation. Objectives: to systematically examine the acute and chronic effects of different forms of exercise on circulating EPCs in healthy populations. Methods: Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. Results: Thirty-one articles met the inclusion criteria including 747 participants aged 19 to 76 years. All included trials used flow cytometry for identification of circulating EPCs. Eight and five different EPC phenotypes were identified in the acute and chronic trials respectively. In the acute trials, moderate intensity continuous (MICON), maximal, prolonged endurance, resistance and high intensity interval training (HIIT) exercise protocols were utilised. Prolonged endurance and resistance exercise had the most profound effect on circulating EPCs followed by maximal exercise. In the chronic trials, MICON exercise, HIIT, HIIT compared to MICON and MICON compared to exergame (exercise modality based on an interactive video game) were identified. MICON exercise had a positive effect on circulating EPCs in older sedentary individuals which was accompanied by improvements in endothelial function and arterial stiffness. Long-stage HIIT (4min bouts) appears to be an effective means and superior than MICON exercise in mobilising circulating EPCs. In conclusion, both in acute and chronic trials the degree of exercise-induced EPC mobilisation depends upon the exercise regime applied. In future, more research is warranted to examine the dose-response relationship of different exercise forms on circulating EPCs using standardised methodology and EPC phenotype

    Fuel Use during Exercise at Altitude in Women with Glucose–Fructose Ingestion

    Get PDF
    Purpose: This study compared the co-ingestion of glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at terrestrial high altitude (HA) versus sea level, in women. Method: Five women completed two bouts of cycling at the same relative workload (55% Wmax) for 120 minutes on acute exposure to HA (3375m) and at sea level (~113m). In each trial, participants ingested 1.2 g.min-1 of glucose (enriched with 13C glucose) and 0.6 g.min-1 of fructose (enriched with 13C fructose) before and every 15 minutes during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation and endogenous glucose oxidation derived from liver and muscle glycogen. Results: The rates and absolute contribution of exogenous carbohydrate oxidation was significantly lower at HA compared with sea level (ES>0.99, P<0.024), with the relative exogenous carbohydrate contribution approaching significance (32.6±6.1 vs. 36.0±6.1%, ES=0.56, P=0.059) during the second hour of exercise. In comparison, no significant differences were observed between HA and sea level for the relative and absolute contributions of liver glucose (3.2±1.2 vs. 3.1±0.8%, ES=0.09, P=0.635 and 5.1±1.8 vs. 5.4±1.7 grams, ES=0.19, P=0.217), and muscle glycogen (14.4±12.2% vs. 15.8±9.3%, ES=0.11, P=0.934 and 23.1±19.0 vs. 28.7±17.8 grams, ES=0.30, P=0.367). Furthermore, there was no significant difference in total fat oxidation between HA and sea level (66.3±21.4 vs. 59.6±7.7 grams, ES=0.32, P=0.557). Conclusion: In women, acute exposure to HA reduces the reliance on exogenous carbohydrate oxidation during cycling at the same relative exercise intensity

    A Four-Way Comparison of Cardiac Function with Normobaric Normoxia, Normobaric Hypoxia, Hypobaric Hypoxia and Genuine High Altitude.

    Get PDF
    There has been considerable debate as to whether different modalities of simulated hypoxia induce similar cardiac responses.This was a prospective observational study of 14 healthy subjects aged 22-35 years. Echocardiography was performed at rest and at 15 and 120 minutes following two hours exercise under normobaric normoxia (NN) and under similar PiO2 following genuine high altitude (GHA) at 3,375m, normobaric hypoxia (NH) and hypobaric hypoxia (HH) to simulate the equivalent hypoxic stimulus to GHA.All 14 subjects completed the experiment at GHA, 11 at NN, 12 under NH, and 6 under HH. The four groups were similar in age, sex and baseline demographics. At baseline rest right ventricular (RV) systolic pressure (RVSP, p = 0.0002), pulmonary vascular resistance (p = 0.0002) and acute mountain sickness (AMS) scores were higher and the SpO2 lower (p<0.0001) among all three hypoxic groups (GHA, NH and HH) compared with NN. At both 15 minutes and 120 minutes post exercise, AMS scores, Cardiac output, septal S', lateral S', tricuspid S' and A' velocities and RVSP were higher and SpO2 lower with all forms of hypoxia compared with NN. On post-test analysis, among the three hypoxia groups, SpO2 was lower at baseline and 15 minutes post exercise with GHA (89.3±3.4% and 89.3±2.2%) and HH (89.0±3.1 and (89.8±5.0) compared with NH (92.9±1.7 and 93.6±2.5%). The RV Myocardial Performance (Tei) Index and RVSP were significantly higher with HH than NH at 15 and 120 minutes post exercise respectively and tricuspid A' was higher with GHA compared with NH at 15 minutes post exercise.GHA, NH and HH produce similar cardiac adaptations over short duration rest despite lower SpO2 levels with GHA and HH compared with NH. Notable differences emerge following exercise in SpO2, RVSP and RV cardiac function

    Markers of physiological stress during exercise under conditions of normoxia, normobaric hypoxia, hypobaric hypoxia and genuine high altitude.

    Get PDF
    Purpose To investigate whether there is a differential response at rest and following exercise to conditions of genuine high altitude (GHA), normobaric hypoxia (NH), hypobaric hypoxia (HH) and normobaric normoxia (NN). Method Markers of sympathoadrenal and adrenocortical function (plasma normetanephrine [PNORMET], metanephrine [PMET], cortisol), myocardial injury (highly sensitive cardiac troponin T [hscTnT]) and function (N-terminal brain natriuretic peptide [NT-proBNP]) were evaluated at rest and with exercise under NN, at 3375 m in the Alps (GHA) and at equivalent simulated altitude under NH and HH. Participants cycled for 2 hours {15 minute warm-up, 105 minutes at 55% Wmax (maximal workload)} with venous blood samples taken prior (T0), immediately following (T120) and 2 hours post-exercise (T240). Results Exercise in the three hypoxic environments produced a similar pattern of response with the only difference between environments being in relation to PNORMET. Exercise in NN only induced a rise in PNORMET and PMET. Conclusion Biochemical markers that reflect sympathoadrenal, adrenocortical and myocardial responses to physiological stress demonstrate significant differences in the response to exercise under conditions of normoxia versus hypoxia while NH and HH appear to induce broadly similar responses to GHA and may therefore be reasonable surrogates

    Exercise Based Cardiac Rehabilitation: Is a Little Encouragement Enough?

    No full text
    corecore