

Citation:

O'Hara, JP and Duckworth, L and Black, A and Woods, D and Mellor, A and Boos, C and Gallagher, L and Arjomandkhah, N and Morrison, D and Preston, T and King, R (2019) Fuel Use during Exercise at Altitude in Women with Glucose–Fructose Ingestion. Medicine and Science in Sports and Exercise. ISSN 1530-0315 DOI: https://doi.org/10.1249/MSS.00000000002072

Link to Leeds Beckett Repository record: http://eprints.leedsbeckett.ac.uk/5992/

Document Version: Article

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.

We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a case-by-case basis.

Fuel Use during Exercise at Altitude in Women with Glucose-Fructose Ingestion

John P O'Hara¹, Lauren Duckworth¹, Alistair Black¹, David R Woods^{1,2,3}, Adrian Mellor^{1,2,4}, Christopher Boos⁵, Liam Gallagher¹, Costas Tsakirides¹, Nicola C. Arjomandkhah⁶, Douglas J Morrison⁷, Thomas Preston⁷, Roderick FGJ King¹

¹ Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds,

UK

² Royal Centre for Defence Medicine, Birmingham, UK

³ Northumbria NHS Trust and Newcastle Trust, UK

⁴ James Cook University Hospital, Middlesborough, UK

⁵ Poole Hospital, Department of Cardiology, Poole, Dorset, UK

⁶ School of Social and Health Sciences, Leeds Trinity University, Leeds, UK.

⁷ Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbridge, UK

Short Title: Substrate oxidation in women at high altitude

Address for Correspondence:

John O'Hara, Research Institute for Sport, Physical Activity and Leisure, School of Sport, Leeds Beckett University, Headingley Campus, Leeds, LS6 3QS, UK. Tel: +44 (0) 113 8125239 Email: J.OHara@leedsbeckett.ac.uk

Abstract

Purpose: This study compared the co-ingestion of glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at terrestrial high altitude (HA) versus sea level, in women. Method: Five women completed two bouts of cycling at the same relative workload (55% W_{max}) for 120 minutes on acute exposure to HA (3375m) and at sea level (~113m). In each trial, participants ingested 1.2 g.min⁻¹ of glucose (enriched with ¹³C glucose) and 0.6 g.min⁻¹ ¹ of fructose (enriched with ¹³C fructose) before and every 15 minutes during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation and endogenous glucose oxidation derived from liver and muscle glycogen. Results: The rates and absolute contribution of exogenous carbohydrate oxidation was significantly lower at HA compared with sea level (ES>0.99, P<0.024), with the relative exogenous carbohydrate contribution approaching significance (32.6±6.1 vs. 36.0±6.1%, ES=0.56, P=0.059) during the second hour of exercise. In comparison, no significant differences were observed between HA and sea level for the relative and absolute contributions of liver glucose (3.2±1.2 vs. 3.1±0.8%, ES=0.09, P=0.635 and 5.1±1.8 vs. 5.4±1.7 grams, ES=0.19, P=0.217), and muscle glycogen (14.4±12.2% vs. 15.8±9.3%, ES=0.11, P=0.934 and 23.1±19.0 vs. 28.7±17.8 grams, ES=0.30, P=0.367). Furthermore, there was no significant difference in total fat oxidation between HA and sea level (66.3 ± 21.4 vs. 59.6±7.7 grams, ES=0.32, P=0.557). Conclusion: In women, acute exposure to HA reduces the reliance on exogenous carbohydrate oxidation during cycling at the same relative exercise intensity.

Keys Words: Acute Hypoxia, Carbon Isotope, Exogenous Carbohydrate Oxidation, Liver Glycogen, Muscle Glycogen, Plasma Glucose Oxidation

_

2

1 Introduction

3 Endogenous stores of carbohydrate and fat are utilized as substrates to meet the metabolic demands 4 of the working muscle, as well as exogenous sources of carbohydrate if provided. The contribution 5 of carbohydrate and fat oxidation to energy expenditure at sea level is primarily related to the 6 intensity and duration of exercise, as well as the type and amount of carbohydrate ingested. 7 However, exposure to high altitude (HA) and the reduction in arterial oxygen saturation, is likely 8 to alter substrate oxidation during exercise compared with sea level. The complete oxidation of 9 carbohydrate requires less oxygen per mole of ATP synthesized compared with the oxidation of 10 free fatty acids (1) potentially leading to a greater reliance on carbohydrate oxidation in hypoxia. 11 However, the literature is inconclusive when comparing substrate oxidation during exercise between hypoxia and normoxia (2). This heterogeneity may be explained by variations in study 12 13 design, such as participants' sex, method of exercise intensity determination (absolute vs. relative) 14 and whether carbohydrate was ingested or not (2).

15

Greater dependency on plasma glucose has been shown in men when comparing acute hypoxia 16 17 with normoxia, using the same absolute exercise intensity (3, 4). Conversely, when the exercise 18 intensity is normalized to the same relative exercise intensity the literature for men is equivocal 19 (2). These data either show an increase (5, 6) or no change in the respiratory exchange ratio (RER) 20 (7, 8). When an exogenous source of carbohydrate is provided on acute exposure to HA, men have 21 shown an increased reliance on endogenous carbohydrate oxidation (9), as well as a reduced 22 reliance on muscle glycogen and increased fat oxidation (10) during exercise at the same relative 23 intensity. However, it is known that sex influences substrate oxidation during exercise at sea level, 24 with women generally relying more on fat than carbohydrate as a fuel source compared with men 25 (11, 12). This has been attributed to women having a higher percentage of body fat (12), a greater 26 lipid content in muscles fibers (11) and better mobilization of fatty acids from subcutaneous 27 adipose tissue linked to cyclic changes in estrogen and progesterone (13). However, following the 28 provision of an exogenous source of glucose during exercise at sea level, most studies show no 29 statistical sex-differences in exogenous carbohydrate oxidation during exercise (14, 15) with one 30 exception (16). In the study by Riddell et al. (16), higher exogenous carbohydrate oxidation was 31 accompanied by a greater reduction in endogenous carbohydrate oxidation during exercise in 32 women compared with men. This is in contrast to other studies, which showed no difference (17) 33 or smaller reductions in endogenous or carbohydrate oxidation compared with men (14). Despite 34 this, there have only been limited studies assessing whole body carbohydrate or fat oxidation in 35 women at altitude.

36

In contrast to men, women have a lower RER, with increased free fatty acid availability when 37 38 exercising at a moderate relative exercise intensity (70% of altitude-related maximal oxygen 39 uptake $(\dot{V}O_{2max})$) on acute exposure to hypoxia (4,300m) compared with normoxia (18). These 40 women also showed no differences in substrate oxidation at HA between the early-follicular and 41 mid-luteal menstrual cycle phases when levels of estradiol and progesterone are high. Conversely, 42 a study, which recruited men and women, showed no change for either sex in RER during acute 43 hypoxic exposure (4100m) compared with normoxia when exercising at a matched relative 44 exercise intensity (50% of altitude-related $\dot{V}O_{2max}$) (19). However, whole body carbohydrate 45 oxidation was increased at HA in both men and women following hypoxic exposure when using 46 the same absolute exercise intensity.

Considering the potential differences in fuel use between women and men at sea level, and what has been documented for men at altitude, it is surprising that the fuel use responses to carbohydrate ingestion during exercise at acute hypoxia have yet to be established in women. Thus, the purpose of the present study was to compare the effects of co-ingesting ¹³C glucose and ¹³C fructose during 120 minutes of moderate intensity cycling exercise on exogenous and endogenous fuel use during acute hypoxia (terrestrial high altitude) and normoxia (sea level) in women.

53

54 Methods

55 Participants

Seven women from the British military were recruited for this study, providing 86% power to 56 57 detect differences in the rate of exogenous carbohydrate oxidation, with an expected mean difference of 0.2 g.min⁻¹ between high altitude and sea level, assuming a standard deviation of 0.17 58 g.min⁻¹ at an alpha of 0.05. However, only five completed the study due to attrition at points where 59 60 it was not possible to recruit additional participants. The five participants (age 25 ± 2 years, body 61 mass 61.7 ± 5.6 kg), were engaged in regular physical training (3-5 training days per week) and 62 considered to be physically fit but not elite athletes. Participants provided written informed consent 63 before the study, which was approved by the Ministry of Defence Research Ethics Committee 64 (Protocol 412/13). This cohort of participants were part of a larger research project and the design 65 of this study and the associated protocols have been described previously (10).

66

67 Preliminary Testing

Participants completed two maximal incremental cycle tests to volitional exhaustion to determine their individual maximal workload (W_{max} (20)) and $\dot{V}O_{2max}$ on a bicycle affixed to a bicycle trainer

70 (Compu Trainer® Pro Lab, Racer Mate, USA), calibrated according to the manufacturer's

71 instructions. The first test was performed at sea level (altitude ~ 113 m) with the second test 72 performed a week later during acute exposure to normobaric hypoxia (FiO₂ ~13.4% (considering 73 water vapour partial pressure (21) and daily fluctuations of barometric pressure) equivalent to 74 3375m (the reported altitude for the New Refuge Torino in the Italian Alps; PiO₂ 95.2 mmHg). Oxygen uptake $(\dot{V}O_2)$ and carbon dioxide production $(\dot{V}CO_2)$ measurements were made 75 76 throughout using an online gas analysis system (Metalyser, Cortex, Germany), calibrated 77 following the manufacturer's instructions and were calculated using standard metabolic algorithms 78 (22) using the Haldane transformation. FiO_2 and $FiCO_2$ were measured continuously, rather than 79 assuming constants, thus correcting for changes in ambient conditions. This is important in a 80 normobaric chamber where the FiO₂ is reduced to simulate a given altitude. At sea level and 81 normobaric hypoxia participants achieved W_{max} values of 208.5 ± 34.4 W and 190.9 ± 31.3 W, and $\dot{V}O_{2max}$ values of 44.7 ± 7.1 ml.kg⁻¹.min⁻¹ and 37.4 ± 5.9 ml.kg⁻¹.min⁻¹, respectively. 82

83

84 Design of the Study

85 Following the assessment of W_{max}, participants completed two experimental cycling trials for 120 86 minutes at 55% W_{max} , one at terrestrial HA (barometric pressure 506.7 ± 1.4 mmHg, PiO₂; 96.3 ± 87 0.3 mmHg (New Refuge Torino, Alps, Italy)), as described previously (10) and another at sea level 88 seven weeks later. To control for menstrual cycle phases, the women were tested in either the 89 early-follicular or mid-luteal phase, which has no effect on fuel use at HA (18). Each cycling test involved the ingestion of 1.8 g.min⁻¹ of carbohydrate (1.2 g.min⁻¹ of glucose (D-glucose, Thornton 90 91 and Ross Ltd, Huddersfield, UK) and 0.6 g.min⁻¹ of fructose (D-fructose, Danisco, Oy, Oktka, Finland) at regular intervals during exercise. Stock glucose (natural δ^{13} C abundance = -32.58 ‰) 92 and fructose (natural δ^{13} C abundance = -30.04 ‰), was enriched using 0.24g of U-¹³C₆ D-glucose 93

94 (Cambridge Isotope Laboratories, Inc, Tewksbury, MA, USA), and 0.12g of U-¹³C₆ D-fructose 95 (Cambridge Isotope Laboratories, Inc), achieving a combined enrichment of $\delta^{13}C = +115.88$ ‰. 96 All $\delta^{13}C$ measurements are quoted with reference to the internationally accepted standard for 97 carbon isotope measurements, Vienna Pee Dee Belemnite (VPDB). The ¹³C abundance of stock 98 glucose and fructose and ¹³C enrichment of spiked glucose and fructose was determined using 99 liquid chromatography coupled to isotope ratio mass spectrometry (LC-IRMS; Isoprime, Cheadle, 90 UK), using L-Fucose as an isotopic internal standard as previously described (23).

101

102 Diet and physical activity before testing

103 Participants recorded their food intake and activity patterns during the 72 hours before the first 104 experimental trial and were instructed to repeat the same diet and activity pattern before the 105 subsequent trial. Participants were required to refrain from any intense and/or prolonged physical 106 activity, alcohol or caffeine consumption in the 36 hours before each experimental trial. In 107 addition, they were asked to refrain from ingesting carbohydrates derived from plants which utilize the C₄ photosynthetic cycle, in which there is higher natural abundance of 13 C (e.g. maize derived 108 sugars) for the duration of the study. This precaution ensured that background ${}^{13}CO_2$ abundance 109 110 was less likely to be perturbed from oxidation of endogenous and dietary substrate stores from 111 naturally "enriched" C4 origin. A standardized evening meal was consumed 12 hours before each 112 experimental trial (total 1443 kcal; 53% carbohydrate, 17% fat, 30% protein).

113

114 Experimental Trials

Each experimental trial was performed at 19 to 21°C following an overnight fast. Participants
repeated their trials at the same time of day, to avoid any influence of circadian variance. On arrival

a catheter (20 gauge Introcan Safety[®], B. Braun Medical Ltd, Sheffield, UK) was inserted into an
antecubital vein for regular blood sampling. After 20 minutes of acute exposure to each
environmental condition, peripheral oxygen saturation (SpO₂ (Nellcor N-20, Covidien, Dublin,
Ireland) was measured and resting blood samples were drawn for the analysis of plasma glucose,
serum insulin, serum free fatty acids, plasma lactate, plasma metanephrine and normetanephrine
concentrations, as well as plasma ¹³C glucose enrichment.

123

Participants then rested for 10 minutes whereby $\dot{V}O_2$ and $\dot{V}CO_2$ measurements were made using an online gas analysis system (Metalyser, Cortex, Germany). For the measurement of ${}^{13}C/{}^{12}C$ in expired CO₂, 12 ml samples of expired gas were collected in duplicate in Labco Exetainers[®] (SerCon Ltd, Crewe, UK) via a mixing chamber (Jaeger, Germany).

128

After a 5 minute standardized warm up, which included the calibration of the bicycle trainer 129 130 (Compu Trainer Pro Lab, Racer Mate, USA), an initial bolus of the carbohydrate solution was 131 consumed (397ml). Participants then completed 120 minutes of cycling; 5 minutes at 40% W_{max}, 132 5 minutes at 45% W_{max}, 5 minutes at 50% W_{max}, 105 minutes at 55% W_{max}. These workloads were 133 calculated from participants' sea level and normobaric hypoxic W_{max} for the sea level and HA 134 environments, respectively. Additional boluses (229ml) of the carbohydrate solution were 135 provided every 15 minutes throughout the 120 minute exercise period. Expired gas breath samples were collected and measurements of $\dot{V}O_2$ and $\dot{V}CO_2$ were made every 15 minutes during exercise. 136 Samples of expired gas for ¹³CO₂ analysis were collected during the final 60 seconds of each 137 138 collection period. Samples for the analysis of plasma glucose, serum insulin, serum free fatty acids and plasma lactate were drawn every 15 minutes, those for plasma ¹³C glucose enrichment were 139

9

drawn at 60, 90 and 120 minutes and those for plasma metanephrine and normetanephrine
concentrations were drawn at 60 and 120 minutes. Heart rate, rating of perceived exertion (RPE)
and SpO₂ was measured every 15 minutes during cycling exercise.

143

144 Analyses

Plasma and serum samples collected at HA were initially stored at -20°C until they were transported back to the United Kingdom, where they were then stored at -80°C until analysis, as per the samples collected at sea level. All samples were analysed in accordance with the procedures described previously (10).

149

The ${}^{13}C/{}^{12}C$ ratio in expired CO₂ was determined using isotope ratio mass spectrometry (IRMS; AP2003, GVI Instruments Ltd, Manchester, UK). The isotopic ratio ${}^{13}C/{}^{12}C$ is derived against laboratory CO₂ (itself calibrated against VPDB) from the ion beam area ratio measurements with correction of the small contribution of ${}^{12}C{}^{16}O{}^{17}O$ at m/z 45; the Craig correction (24). The ${}^{13}C/{}^{12}C$ ratio in plasma glucose was determined using LC-IRMS as described previously (23).

155

156 Oxidation rates of total fat, total carbohydrate, endogenous carbohydrate (liver and muscle), 157 plasma glucose and exogenous carbohydrate derived from glucose and fructose ingestion 158 combined, were calculated by indirect calorimetry ($\dot{V}O_2$ and $\dot{V}CO_2$) and stable isotope 159 measurements ($^{13}C/^{12}C$ ratio in expired CO₂ and plasma glucose), as detailed below.

160

161

163 Calculations

164 Total CHO and fat oxidation (g·min⁻¹) were computed from $\dot{V}O_2$ (L·min⁻¹) and $\dot{V}CO_2$ (L·min⁻¹) 165 using stoichiometric equations (25), with the assumption that protein oxidation during exercise 166 was negligible.

167

168 The isotopic enrichment of the ingested glucose and fructose, (R_{exo}), was expressed in standard 169 $\delta^{13}C$ units (‰) relative to VPDB (26). Exogenous carbohydrate oxidation derived from the 170 combined ingestion of glucose and fructose (G_{exo} , grams) was computed by using equation 1 (27). 171

172 Exogenous Carbohydrate Oxidation
$$(g \cdot min^{-1}) = \dot{V}CO_2 [(R_{exp} - R_{ref})/(R_{exo} - R_{ref})]/k$$
 (1)

173

174 where $\dot{V}CO_2$ is in litres per minute, R_{exp} is the measured isotopic composition in expired CO₂, R_{ref} 175 is the isotopic composition of expired CO_2 at rest before exercise and carbohydrate ingestion, R_{exo} 176 is the measured isotopic composition of the exogenous glucose and fructose ingested, and k $(0.7426 \text{ l}\cdot\text{g}^{-1})$ is the rate adjusted value for the complete oxidation of glucose (28). The use of R_{ref} 177 178 from expired CO₂ at rest is typical of studies in this area of research (9, 29) as the high 13 C-179 enrichment of exogenous glucose and fructose provides a strong signal in expired CO₂. This 180 cancels the confounding effects of relatively small fluctuations in background enrichment of 181 expired CO_2 seen from rest to exercise following a Western European diet (30) on the calculation 182 of exogenous carbohydrate oxidation. Endogenous carbohydrate oxidation was calculated by 183 subtracting exogenous carbohydrate oxidation from total carbohydrate oxidation.

Computations were made on the assumption that, in response to exercise, ¹³C is not irreversibly 185 186 lost in pools of tricarboxylic acid cycle intermediates and/or bicarbonate, and that lactate produced 187 from either glucose or fructose is either oxidized in muscle or recycled through gluconeogenesis 188 to be used subsequently by complete oxidation. Essentially exogenous carbohydrate oxidation is calculated irrespective of the pathway that finally produces ${}^{13}CO_2$ that can be measured. The 189 calculations are based on the assumption that ¹³CO₂ recovery in expired gases was complete or 190 191 almost complete during exercise (31). Such computation has been shown to underestimate 192 exogenous carbohydrate oxidation rates at the beginning of exercise because of the delay between 13 CO₂ production in tissues and expired 13 CO₂ at the mouth (32). Based on this, exogenous 193 194 carbohydrate oxidation rates are presented from 60 minutes onwards during the exercise period, 195 where it is expected that there would be isotopic equilibrium in the tissues and at the mouth.

196

197 Using the isotopic compositions of plasma glucose (R_{glu}) the oxidation rate of plasma glucose was 198 computed at 60, 90 and 120 minutes during exercise (equation 2 (33)).

199

200 Plasma glucose oxidation $(g \cdot min^{-1}) = \dot{V} CO_2 [(R_{exp} - R_{ref})/(R_{glu} - R_{ref})]/k$ (2)

201

The oxidation rate of muscle glycogen ($g \cdot min^{-1}$), either directly or through the lactate shuttle (34), was calculated by subtracting plasma glucose oxidation from total carbohydrate oxidation. Finally, the amount of glucose released from the liver was estimated as the difference between plasma glucose and exogenous carbohydrate oxidation (33).

206

208 Statistical Analysis

209 GraphPad Prism version 6.00 for Windows (GraphPad Software, La Jolla California USA) was 210 used for graph creation. Data were normally distributed (Shapiro-Wilk) and are presented as mean 211 \pm SD. Two-way repeated measures ANOVA was used to compare differences in fuel use and blood 212 related variables over time and between conditions. Post-hoc analysis was performed for any 213 significant effects using paired samples t-tests. Paired t-tests were also used to compare mean 214 differences in relative and absolute fuel use, as well as heart rate, SpO₂ and RPE between 215 conditions. This was supported where appropriate with 95% confidence intervals. Data were 216 evaluated using SPSS for Windows version 22 (Chicago, USA) with statistical significance 217 determined as P < 0.05. Due to participant attrition potentially affecting the power of the study, we have placed greater emphasis on effect sizes (ES) in the interpretation of these data. Cohen's d 218 219 effect sizes were calculated, and interpreted using a threshold scale, where 0-0.2 was considered 220 to be a trivial effect, 0.2-0.6 a small effect, 0.6-1.2 a moderate effect, 1.2-2.0 a large effect, and 221 >2.0 a very large effect (35).

222

223 **Results**

224 Total Carbohydrate and Fat Oxidation

There was a *small*, but non-significant difference in total energy expenditure for 2 hours of continuous cycling between HA and sea level conditions $(1154.0 \pm 170.5 \text{ kcal vs. } 1245.3 \pm 160.5 \text{ kcal}, \text{ES}=0.54; \text{P}=0.114)$. *Large* and *moderate* effect sizes indicated lower absolute carbohydrate oxidation at HA compared with sea level during the first hour, second hour and for the entire 2 hours of continuous cycling, though non-significant (table 1). *Small* non-significant effects were observed for the relative contribution of carbohydrate to the total energy yield during the second hour of exercise when comparing HA and sea level trials ($50.2 \pm 10.2\%$ vs. $54.9 \pm 6.3\%$, ES=0.46; P=0.34). Alternatively, only *small* and *trivial* effect sizes for absolute fat oxidation were observed during the exercise periods (table 1). *Small* non-significant effects were also observed for the relative contribution of fat oxidation to the total energy yield during the second hour of exercise when comparing HA and sea level trials ($49.8 \pm 10.2\%$ vs. $45.08 \pm 6.3\%$; ES =0.46; P=0.34), figure 1.

237

238 Exogenous and Endogenous Carbohydrate oxidation.

239 Exogenous carbohydrate oxidation rates were *moderately* lower at HA compared with sea level, 240 during the second hour of continuous cycling, being significant at 60 (ES=0.99, P=0.003), 90 241 (ES=1.19, P=0.017) and 120 minutes (ES=0.99, P=0.024), figure 2a. A small effect was observed 242 for the relative contribution of exogenous carbohydrate oxidation to the total energy yield between 243 HA and sea level, which approached significance $(32.6 \pm 6.1\% \text{ vs. } 36.0 \pm 6.1\%, \text{ES}=0.56,$ 244 P=0.059), figure 1. Further, absolute exogenous carbohydrate oxidation during the second hour of 245 exercise, was *moderately* and significantly lower at HA compared with sea level (table 2). There 246 was a *moderate* but non-significant effect towards lower absolute endogenous carbohydrate 247 oxidation at HA compared with sea level for the second hour of exercise (table 2). Furthermore, 248 the relative contribution of endogenous carbohydrate oxidation to the total energy yield was *trivial* 249 and non-significant between HA ($17.6 \pm 13.2\%$) and sea level ($19.0 \pm 9.8\%$, ES=0.1, P=0.725).

250

251 Oxidation of plasma glucose, liver glucose and muscle glycogen

A lower rate of plasma glucose oxidation was seen at HA compared with sea level during the second hour of exercise, with *moderate* (60 minutes, ES=1.07) and *large* (90 minutes, ES=1.61 254 and 120 minutes, ES=1.33) but non-significant effects (P=0.113), figure 2b. In addition, the 255 absolute contribution of plasma glucose to the total energy yield was *moderately* and significantly 256 lower at HA compared with sea level (table 2). The rate of liver glucose oxidation produced non-257 significant (P=0.471) moderate (60 minutes, ES=0.75), trivial (90 minutes, ES=0.12) and small 258 effects (120 minutes, ES=0.36) between conditions, figure 2c. Further, *trivial* and non-significant 259 effects were observed for both the relative (HA: $3.2 \pm 1.2\%$ vs. sea level: $3.1 \pm 0.8\%$, ES=0.09, 260 P=0.635, figure 1) and absolute contributions of liver glucose (table 2) to the total energy yield 261 between conditions during the second hour of exercise. The rate of muscle glycogen oxidation 262 produced non-significant moderate (60 minutes, ES=0.92, P=0.085) and trivial effects (90 263 minutes, ES=0.04, P=0.841 and 120 minutes, ES=0.15, P=0.708) between conditions, figure 2d. 264 *Trivial* non-significant effect was observed for the relative contribution of muscle glycogen to the 265 total energy yield for the second hour of exercise when comparing HA and sea level ($14.4 \pm 12.2\%$ vs. $15.8 \pm 9.3\%$, ES=0.11, P=0.934), figure 1. Furthermore, the absolute contributions of muscle 266 267 glycogen showed a *small* non-significant effect between conditions (table 2).

268

269 Blood Biochemistry

Plasma glucose concentrations were *moderately* higher at HA compared with sea level at 90 and 120 minutes (ES=0.74 and 0.87), with the condition and time interaction approaching significance (P=0.072), figure 3a. *Moderate* to *large effect* sizes indicate higher plasma lactate concentrations during exercise at HA compared with sea level (ES=0.86), but failed to reach statistical significance (P=0.324), figure 3b. There were mainly *small* and non-significant effects for serum insulin responses during exercise between conditions, which approached significance (ES<0.60, P=0.07), figure 3c. Serum free fatty acid concentrations were *moderately* higher during the initial 30 minutes of exercise at HA compared with sea level (ES>0.69), but there was a non-significant
condition and time interaction (P=0.469), figure 3d. Metanephrine concentration was *moderately*higher at HA compared with sea level at 60 minutes (ES=094) and *largely* higher at 120 minutes
(ES= 1.40), however, these differences only approached significance (P>0.075), figure 3e. A *very large* effect for normetanephrine concentration was observed, being significantly higher at HA
compared with sea level at both 60 (ES= 2.02, P=0.009,) and 120 minutes (ES=2.36, P=0.006),
figure 3f.

284

285 Heart Rate, Rating of Perceived Exertion and SpO₂

Table 3 shows heart rate, RPE and SpO_2 at HA and sea level during the 2 hours of cycling, as well as during the initial and last hour of cycling.

288

289 Discussion290

291 This study, to our knowledge, is the first to compare exogenous and endogenous (liver and muscle) 292 carbohydrate oxidation, as well as fat oxidation during matched relative intensity (55% W_{max}) 293 cycling at terrestrial HA and sea level in women. Exogenous carbohydrate oxidation supplied as 294 glucose and fructose made a significant contribution to the total energy yield in both conditions 295 during the second hour of exercise. However, the primary findings are that exogenous 296 carbohydrate oxidation was reduced in acute hypoxia compared with normoxia in these women 297 leading to lower absolute whole body carbohydrate oxidation at HA. The latter was not associated 298 with alterations in the use of endogenous glycogen stores.

299

300 The suppressed rate of exogenous carbohydrate oxidation at HA (0.86 g.min^{-1}) compared with sea 301 level (1.03 g.min^{-1}) is supported by literature in men when the relative (10) and absolute (29)

302 exercise intensity was matched. Our previous study in men produced similar rates of exogenous 303 carbohydrate oxidation at HA (0.92 g.min⁻¹) (10). In contrast to our earlier work in men (10), the 304 differences in the rates of exogenous carbohydrate oxidation in these women was large enough for 305 the relative and absolute contributions to the total energy yield to demonstrate the same pattern of 306 response, being lower at acute hypoxia compared with sea level. These differences in the absolute 307 and relative exogenous carbohydrate responses between men and women who took part in an 308 identical study remains to be explained. Young et al. (29) reported suppressed exogenous glucose 309 oxidation in men, albeit when the absolute exercise intensity was matched between HA (0.19 310 g.min⁻¹) and sea level (0.38 g.min⁻¹). However, their rates were lower compared with the present 311 study, which in part may be due to the lower workload, as well as the different mode of exercise 312 compared with the present study (walking vs. cycling). Further, their study is limited as the glucose-fructose beverage was only enriched with ¹³C- glucose, hence their data is likely 313 314 underestimated as based solely on exogenous glucose oxidation, not including any fructose 315 contribution. In contrast, Peronnet et al. (9) showed no differences in exogenous glucose oxidation 316 following glucose ingestion (1.75 g.min⁻¹) when matching both the relative and absolute exercise 317 intensity between HA and sea level. In comparison the rates of exogenous carbohydrate oxidation 318 were also lower at both HA (0.43 g.min⁻¹) and sea level (relative: 0.54 g.min⁻¹, absolute: 0.50 319 g.min⁻¹) compared with the present study. The greater availability of carbohydrate in the present 320 study is due to the likely higher overall carbohydrate absorption rates (36), due to glucose and 321 fructose's distinctly different intestinal transport mechanisms.

322

Acute hypoxic exposure is associated with reduced insulin sensitivity in both men (37) and women (38) due to increased catecholamine's and cortisol levels. However, overall the hyperglycemia in

both conditions was similar, which is in contrast to studies that have reported elevated plasma glucose concentrations following carbohydrate ingestion during acute hypoxia compared with sea level (9, 29). Furthermore, the plasma glucose concentrations in the present study, stimulated insulin to similar concentrations, despite at least *moderately* higher metanephrine and normetanephrine concentrations at HA. Therefore, the present study does not support the idea of insulin resistance being a plausible explanation for the reduced exogenous carbohydrate oxidation during exercise on acute exposure to HA.

332

333 The absolute whole body carbohydrate oxidation was reduced in women at HA compared with sea 334 level. These data are consistent with the previous literature in men (9, 10), following glucosefructose or glucose ingestion during matched relative exercise intensity. When comparing these 335 336 data with our previous research in men (10), the reduction in whole body carbohydrate oxidation 337 during 2 hours of exercise at HA is less (~40g vs. ~129g). This may be explained by the lower 338 absolute cycling intensity for the women (105.0 ± 17.2 watts) compared with the men (114.9 ± 9.7 339 watts), with a lower total energy expenditure (~1154 kcal vs. ~1347 kcal). However, preferential 340 use of fat as a fuel source by women may also be an explanation.

A small difference of 7% in total energy expenditure between HA and sea level is due to the lower absolute workload at HA ($105.0 \pm 17.2 \text{ vs.} 114.7 \pm 18.9 \text{ watts}$). This will have only marginally contributed to the lower absolute oxidation of whole body carbohydrate at HA and is unlikely to be the full explanation as the magnitude of difference (~24%) far outweighs any difference in total energy expenditure. The primary explanation is that reduced exogenous carbohydrate oxidation makes the most significantly contribution towards the lower whole body carbohydrate oxidation during the second hour of exercise at HA. 348 In contrast to the literature in men (10, 39), absolute and relative fat oxidation did not significantly 349 increase during exercise at HA compared with sea level. These data are supported by the similar 350 free fatty acid concentrations, suggesting the rate of utilization is comparable despite the higher 351 normetanephrine and metanephrine concentrations. The fact that fat oxidation was not 352 significantly affected by acute exposure to HA in these women, may be due to their higher fat 353 oxidation at sea level (baseline effect) compared with men. This has been ascribed to women 354 having a greater proportion of body fat (12), a greater lipid content in muscles fibers (11), a higher 355 percentage of type 1 muscle fibers (40) and better mobilization of fatty acids from subcutaneous 356 adipose tissue linked to cyclic changes in estrogen and progesterone (13). However, it is interesting 357 to note that the magnitude of fat oxidation in women at HA, was very similar compared with our previous study in men (50% vs. 51%), as was the use of pre-existing muscle glycogen (17% vs. 358 359 16%), exogenous carbohydrate oxidation (32% vs. 30%) and glucose release from the liver (3%). 360 This suggests that women and men fuel exercise at HA in a very similar fashion following the 361 ingestion of glucose-fructose.

362

The sample size in the present study is smaller than originally intended, due to participant attrition. Post-hoc power analysis revealed that the rate of exogenous carbohydrate oxidation provided a power of 57%, 71% and 57% for 60, 90 and 120 minutes of cycling, respectively, using the mean difference and associated standard deviation at each time point and an alpha level of 0.05. Therefore, this study is slightly underpower compared with the accepted 80% and should be interpreted in this context.

369

In conclusion, acute exposure to hypoxia reduced the exogenous oxidation of glucose and fructosecompared with normoxia during 2 hours of cycling at the same relative exercise intensity. This

372 may have practical implications, as the conventional carbohydrate ingestion recommendations 373 alter fuel use compared with normoxia. Thus, further research is required to identify an optimal 374 dose for women on acute HA exposure, as well as establishing the mechanism for reduced 375 exogenous carbohydrate oxidation.

376

377 Acknowledgements

The authors would like to thank all the participants for their time and effort, as well as Leeds Beckett University for funding this research. We give a special thanks to the extended research team that assisted with data collection, as well as Sandra Small for help with breath ${}^{13}C$ CO₂ analysis and Eleanor McKay for help with ${}^{13}C$ glucose analysis. The authors declared that the results of this study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. The results of the present study do not constitute endorsement by ACSM.

385

- 386 **Conflict of Interest**
- 387 The authors report no conflict of interest.

388

389 References390

Hochachka PW, Stanley C, Matheson GO, McKenzie DC, Allen PS, Parkhouse WS.
 Metabolic and work efficiencies during exercise in Andean natives. J Appl Physiol (1985).
 1991;70(4):1720-30.

394 2. Griffiths A, Shannon OM, Matu J, King R, Deighton K, O'Hara JP. The effects of
395 environmental hypoxia on substrate utilisation during exercise: a meta-analysis. J Int Soc Sports
396 Nutr. 2019;16(1):10. Epub 2019/03/01.

397 3. Brooks GA, Butterfield GE, Wolfe RR, et al. Increased dependence on blood glucose after
398 acclimatization to 4,300 m. J Appl Physiol (1985). 1991;70(2):919-27.

399 4. Roberts AC, Reeves JT, Butterfield GE, et al. Altitude and beta-blockade augment glucose
400 utilization during submaximal exercise. J Appl Physiol (1985). 1996;80(2):605-15.

401 5. Katayama K, Goto K, Ishida K, Ogita F. Substrate utilization during exercise and recovery
402 at moderate altitude. Metabolism. 2010;59(7):959-66.

403 6. Friedmann B, Bauer T, Menold E, Bartsch P. Exercise with the intensity of the individual
404 anaerobic threshold in acute hypoxia. Med Sci Sports Exerc. 2004;36(10):1737-42.

Young AJ, Evans WJ, Cymerman A, Pandolf KB, Knapik JJ, Maher JT. Sparing effect of
chronic high-altitude exposure on muscle glycogen utilization. Journal of applied physiology:
respiratory, environmental and exercise physiology. 1982;52(4):857-62.

8. Bouissou P, Guezennec CY, Defer G, Pesquies P. Oxygen consumption, lactate
accumulation, and sympathetic response during prolonged exercise under hypoxia. Int J Sports
Med. 1987;8(4):266-9. Epub 1987/08/01.

9. Peronnet F, Massicotte D, Folch N, et al. Substrate utilization during prolonged exercise
with ingestion of (13)C-glucose in acute hypobaric hypoxia (4,300 m). Eur J Appl Physiol.
2006;97(5):527-34.

414 10. O'Hara JP, Woods DR, Mellor A, et al. A comparison of substrate oxidation during
415 prolonged exercise in men at terrestrial altitude and normobaric normoxia following the
416 coingestion of 13C glucose and 13C fructose. Physiological reports. 2017;5(1).

417 11. Tarnopolsky MA. Gender differences in substrate metabolism during endurance exercise.
418 Canadian journal of applied physiology = Revue canadienne de physiologie appliquee.
419 2000;25(4):312-27.

420 12. Knechtle B, Muller G, Willmann F, Kotteck K, Eser P, Knecht H. Fat oxidation in men
421 and women endurance athletes in running and cycling. Int J Sports Med. 2004;25(1):38-44. Epub
422 2004/01/30. doi: 10.1055/s-2003-45232.

423 13. Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R. Skeletal
424 muscle fiber quality in older men and women. American journal of physiology Cell physiology.
425 2000;279(3):C611-8.

426 14. Tremblay J, Peronnet F, Massicotte D, Lavoie C. Carbohydrate supplementation and sex
427 differences in fuel selection during exercise. Med Sci Sports Exerc. 2010;42(7):1314-23.

M'Kaouar H, Peronnet F, Massicotte D, Lavoie C. Gender difference in the metabolic
response to prolonged exercise with [13C]glucose ingestion. Eur J Appl Physiol. 2004;92(45):462-9.

431 16. Riddell MC, Partington SL, Stupka N, Armstrong D, Rennie C, Tarnopolsky MA.
432 Substrate utilization during exercise performed with and without glucose ingestion in female and
433 male endurance trained athletes. Int J Sport Nutr Exerc Metab. 2003;13(4):407-21.

434 17. Wallis GA, Dawson R, Achten J, Webber J, Jeukendrup AE. Metabolic response to
435 carbohydrate ingestion during exercise in males and females. Am J Physiol Endocrinol Metab.
436 2006;290(4):E708-15.

437 18. Beidleman BA, Rock PB, Muza SR, et al. Substrate oxidation is altered in women during
438 exercise upon acute altitude exposure. Med Sci Sports Exerc. 2002;34(3):430-7.

Lundby C, Van Hall G. Substrate utilization in sea level residents during exercise in acute
hypoxia and after 4 weeks of acclimatization to 4100 m. Acta physiologica Scandinavica.
2002;176(3):195-201.

442 20. Kuipers H, Keizer HA, Brouns F, Saris WH. Carbohydrate feeding and glycogen synthesis
443 during exercise in man. Pflugers Arch. 1987;410(6):652-6.

444 21. Conkin J. PH2O and simulated hypobaric hypoxia. Aviation, space, and environmental
445 medicine. 2011;82(12):1157-8.

446 22. Wasserman K, Hansen J, Sue D, Casaburi R, Whipp B. Principles of exercise testing and

447 interpretation: including pathophysiology and clinical applications. 3rd ed. Philadelphia:
448 Lippincott Williams & Wilkins; 1999. p64-68

449 23. Morrison DJ, O'Hara JP, King RF, Preston T. Quantitation of plasma 13C-galactose and

450 13C-glucose during exercise by liquid chromatography/isotope ratio mass spectrometry. Rapid

451 Commun Mass Spectrom. 2011;25(17):2484-8.

452 24. Craig H. Isotopic standards for carbon and oxygen and correction factors for mass453 spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta. 1957;12(1-2):133454 49.

455 25. Peronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport
456 Sci. 1991;16(1):23-9.

457 26. Craig H. The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta.
458 1953;3:53-92.

459 27. Mosora F, Lacroix M, Luyckx A, et al. Glucose oxidation in relation to the size of the oral
460 glucose loading dose. Metabolism. 1981;30(12):1143-9.

28. Peronnet F, Massicotte D, Brisson G, Hillaire-Marcel C. Use of ¹³C substrates for
metabolic studies in exercise: methodological considerations. J Appl Physiol. 1990;69(3):104752.

464 29. Young AJ, Berryman CE, Kenefick RW, et al. Altitude Acclimatization Alleviates the
465 Hypoxia-Induced Suppression of Exogenous Glucose Oxidation During Steady-State Aerobic
466 Exercise. Frontiers in physiology. 2018;9:830.

Gautier JF, Pirnay F, Jandrain B, et al. Endogenous substrate oxidation during exercise and
variations in breath 13CO2/12CO2. J Appl Physiol (1985). 1993;74(1):133-8.

469 31. Trimmer JK, Casazza GA, Horning MA, Brooks GA. Recovery of (13)CO2 during rest

and exercise after [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO3 infusions. Am J Physiol

471 Endocrinol Metab. 2001;281(4):E683-92.

472 32. Pallikarakis N, Sphiris N, Lefebvre P. Influence of the bicarbonate pool and on the
473 occurrence of 13CO2 in exhaled air. Eur J Appl Physiol Occup Physiol. 1991;63(3-4):179-83.

474 33. Peronnet F, Rheaume N, Lavoie C, Hillaire-Marcel C, Massicotte D. Oral [13C]glucose
475 oxidation during prolonged exercise after high- and low-carbohydrate diets. J Appl Physiol.
476 1998;85(2):723-30.

477 34. Brooks GA. Lactate production under fully aerobic conditions: the lactate shuttle during
478 rest and exercise. Federation proceedings. 1986;45(13):2924-9.

479 35. Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes.
480 International journal of sports physiology and performance. 2006;1(1):50-7.

36. Shi X, Summers RW, Schedl HP, Flanagan SW, Chang R, Gisolfi CV. Effects of
carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports
Exerc. 1995;27(12):1607-15.

484 37. Larsen JJ, Hansen JM, Olsen NV, Galbo H, Dela F. The effect of altitude hypoxia on
485 glucose homeostasis in men. The Journal of physiology. 1997;504 (Pt 1):241-9.

486	38.	Braun B, Horton T. Endocrine regulation of exercise substrate utilization in women
487	compa	ared to men. Exercise and sport sciences reviews. 2001;29(4):149-54.
488	39.	Matu J, Deighton K, Ispoglou T, Duckworth L. The effect of moderate versus severe
489	simula	ated altitude on appetite, gut hormones, energy intake and substrate oxidation in men.
490	Appet	ite. 2017;113:284-92.
491	40.	Glenmark B. Skeletal muscle fibre types, physical performance, physical activity and
492	attituc	le to physical activity in women and men. A follow-up from age 16 to 27. Acta Physiol Scand
493	Suppl	. 1994;623:1-47.
494		
$\begin{array}{c} 495\\ 496\\ 497\\ 498\\ 499\\ 500\\ 501\\ 502\\ 503\\ 504\\ 505\\ 506\\ 507\\ 508\\ 509\\ 510\\ 511\\ 512\\ 518\\ 519\\ 516\\ 517\\ 518\\ 519\\ 520\\ 521\\ 522\\ 523\\ \end{array}$		

Figure Captions

Figure 1. The relative (% of energy yield) contribution of exogenous and endogenous substrate oxidation during the second hour of cycling at high altitude and sea level.

Figure 2. Oxidation rates of exogenous CHO (a), plasma glucose (b), glucose released from the liver (c) and muscle glycogen (d) during the second hour of cycling. * high altitude significantly lower compared with sea level (P<0.05).

Figure 3. Plasma glucose (a), plasma lactate (b), serum insulin (c), serum free fatty acids (d), plasma metanephrine (e) and plasma normetanephrine (f) concentrations at rest and during 2 hours of cycling. * high altitude significantly higher compared with sea level (P<0.05).