48 research outputs found

    CD25+ immunoregulatory T-cells of donor origin suppress alloreactivity after BMT

    Get PDF
    AbstractWe have previously identified donor-derived Thy1+ alphabeta T-cell receptor (TCR)+ CD4+ CD8- regulatory T-cells that suppress GVH reactivity induced by donor leukocyte infusion (DLI) after BMT. These cells develop in the recipient thymus and may play a role in the maintenance of donor-host tolerance after allogeneic BMT. In the present study, we sought to further characterize the T-cells responsible for the regulatory cell activity in our model. Lethally irradiated recipient AKR mice (H-2k) received transplants of BM from CD25-deficient (-/-) C57BL/6 mice (H-2b). Recipients of CD25-deficient BM developed more severe GVHD after DLI than did recipients of normal BM, a result that indirectly suggests that CD4+ CD25+ regulatory T-cells are important to the suppression of GVH reactivity after allogeneic BMT. GVHD was accompanied by mortality, body weight loss, and elevated percentages of T-cells from the DLI in the peripheral blood in mice that received CD25-deficient BM compared to mice that received normal BM. Both CD40-CD40L and CD28-B7 costimulatory pathways have been implicated in the generation of CD25+ regulatory T-cells. Therefore, we tested whether deficiency in either of these pathways affected the activity of donor BM-derived regulatory T-cells. The absence of CD40L did not affect the regulatory T-cells (ie, recipient mice were still protected from DLI-induced GVHD). In contrast, use of marrow from CD28-deficient mice resulted in complete loss of suppression of GVH reactivity. Thus, CD28 but not CD40L was critical for the generation and/or activation of immunoregulatory T-cells that suppressed GVHD induced by DLI. Together, the results of these experiments suggest that CD4+ CD25+ regulatory T-cells suppress GVH reactivity after BMT and that CD28 expression is indispensable for the generation of these cells.Biol Blood Marrow Transplant 2002;8(10):525-35

    Coulomb Blockade in a Silicon/Silicon-Germanium Two-Dimensional Electron Gas Quantum Dot

    Full text link
    We report the fabrication and electrical characterization of a single electron transistor in a modulation doped silicon/silicon-germanium heterostructure. The quantum dot is fabricated by electron beam lithography and subsequent reactive ion etching. The dot potential and electron density are modified by laterally defined side gates in the plane of the dot. Low temperature measurements show Coulomb blockade with a single electron charging energy of 3.2 meV.Comment: Typos corrected; to appear in Appl. Phys. Let

    Conditioned stimuli affect ethanol-seeking by female alcohol-preferring (P) rats: the role of repeated-deprivations, cue-pretreatment, and cue-temporal intervals

    Get PDF
    Rationale: Evidence indicates drug-paired stimuli can evoke drug-craving leading to drug-seeking and repeated relapse periods can influence drug-seeking behaviors. Objectives: The present study examined (1) the effect of an interaction between repeated deprivation cycles and excitatory conditioning stimuli (CS +) on ethanol (EtOH)-seeking; (2) the effects of EtOH-paired cue-exposure in a non-drug paired environment on subsequent conditioning in a drug-paired environment; and (3) the temporal effects of conditioned cues on subsequent EtOH-seeking. Methods: Adult female alcohol-preferring (P) rats were exposed to three conditioned odor cues; CS+ associated with EtOH self-administration, CS- associated with the absence of EtOH (extinction training), and a neutral stimulus (CS0) presented in a neutral non drug-paired environment. The rats underwent 4 deprivation cycles or were Non-Deprived, following extinction they were maintained in a home cage for an EtOH-free period, and then exposed to no cue, CS+, CS-, or CS0 to assess the effect of the conditioned cues on EtOH-seeking behavior. Results: Repeated deprivations enhanced and prolonged the duration of CS+ effects on EtOH-seeking. Presentation of the CS- in a non-drug paired environment blocked the ability of a CS+ to enhance EtOH-seeking in a drug-paired environment. Presentation of the CS+ or CS- in a non-drug paired environment 2 or 4-hours earlier significantly altered EtOH-seeking. Conclusion: Results indicated an interaction between repeated deprivation cycles and CS+ resulted in a potentiation of CS+ evoked EtOH-seeking. In addition, a CS- may have therapeutic potential by providing prophylactic protection against relapse behavior in the presence of cues in the drug-using environment

    Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND)

    Get PDF
    Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H
    corecore