69 research outputs found

    Improving the biological interfacing capability of Improving the biological interfacing capability of diketopyrrolopyrrole polymers via p-type doping

    Get PDF
    Polydiketopyrrolopyrrole terthiophene (DPP3T), a high-performing conjugated polymer, holds great potential as active material for bioelectronics. Herein, its surface properties are modulated through p-type doping, thereby enhancing the cell behaviour on top of the doped films

    Application of heavy-quark effective theory to lattice QCD: III. Radiative corrections to heavy-heavy currents

    Full text link
    We apply heavy-quark effective theory (HQET) to separate long- and short-distance effects of heavy quarks in lattice gauge theory. In this paper we focus on flavor-changing currents that mediate transitions from one heavy flavor to another. We stress differences in the formalism for heavy-light currents, which are discussed in a companion paper, showing how HQET provides a systematic matching procedure. We obtain one-loop results for the matching factors of lattice currents, needed for heavy-quark phenomenology, such as the calculation of zero-recoil form factors for the semileptonic decays BD()lνB\to D^{(*)}l\nu. Results for the Brodsky-Lepage-Mackenzie scale qq^* are also given.Comment: 35 pages, 17 figures. Program LatHQ2QCD to compute matching one-loop coefficients available at http://theory.fnal.gov/people/kronfeld/LatHQ2QCD

    A pilot of the feasibility and usefulness of an aged obese model for use in stroke research

    Get PDF
    Background: Animal models of stroke have been criticised as having poor predictive validity, lacking risk factors prevalent in an aging population. This pilot study examined the development of comorbidities in a combined aged and high-fat diet model, and then examined the feasibility of modelling stroke in such rats. Methods: Twelve-month old male Wistar-Han rats (n=15) were fed a 60% fat diet for 8 months during which monthly serial blood samples were taken to assess the development of metabolic syndrome and pro-inflammatory markers. Following this, to pilot the suitability of these rats for undergoing surgical models of stroke, they underwent 30min of middle cerebral artery occlusion (MCAO) alongside younger controls fed a standard diet (n=10). Survival, weight and functional outcome were monitored, and blood vessels and tissues collected for analysis. Results: A high fat diet in aged rats led to substantial obesity. These rats did not develop type 2 diabetes or hypertension. There was thickening of the thoracic arterial wall and vacuole formation in the liver; but of the cytokines examined changes were not seen. MCAO surgery and behavioural assessment was possible in this model (with some caveats discussed in manuscript). Conclusions: This study shows MCAO is possible in aged, obese rats. However, this model is not ideal for recapitulating the complex comorbidities commonly seen in stroke patients

    Application of heavy-quark effective theory to lattice QCD: II. Radiative corrections to heavy-light currents

    Get PDF
    We apply heavy-quark effective theory to separate long- and short-distance effects of heavy quarks in lattice gauge theory. In this approach, the inverse heavy-quark mass and the lattice spacing are treated as short distances, and their effects are lumped into short-distance coefficients. We show how to use this formalism to match lattice gauge theory to continuum QCD, order by order in the heavy-quark expansion. In this paper, we focus on heavy-light currents. In particular, we obtain one-loop results for the matching factors of lattice currents, needed for heavy-quark phenomenology, such as the calculation of heavy-light decay constants, and heavy-to-light transition form factors. Results for the Brodsky-Lepage-Mackenzie scale qq^* are also given.Comment: 32 pages, 8 figures. v2 corrects Eqs. (4.9) and (4.10) and adds a reference. Program LatHQ2QCD to compute matching one-loop coefficients available at http://theory.fnal.gov/people/kronfeld/LatHQ2QCD

    The Effect of Agronomic Factors on the Yield of Winter Wheat in Crop Rotation with Livestock Production

    Get PDF
    The aim of the study was to evaluate the influence not only of the year, but also of the three agronomic factors, namely pre-crops, soil tillage, and application of fungicides on the subsequent grain yield of winter wheat. The field trial was carried out at the Field Trial Station in Žabčice (South Moravia, Czech Republic), between 2014 and 2016, as part of a long-term field experiment focused on management of soil with livestock production. Winter wheat was grown after two pre-crops, namely alfalfa and silage maize. The soil was treated using three technologies, namely conventional tillage (CT) – ploughing to a depth of 0.24 m, minimum tillage (MT) – shallow loosening to a depth of 0.15 m, and no-tillage (NT) – direct sowing. In terms of fungicide treatment, two treatments were used and compared to a non-treatment variant. The obtained results suggest that the statistical significance was not found in the influence of the pre-crop. On the contrary, the influence of not only the year but also of the soil tillage technology and fungicide treatment was confirmed. Higher yields by 0.59 t/ha were achieved after shallow loosening and direct sowing as compared with after traditional ploughing and after application of fungicides. In addition, inconclusive influence of interaction between pre-crop and soil tillage as well as between soil tillage and fungicide treatment was also found

    Interactive Effects of Time, CO\u3csub\u3e2\u3c/sub\u3e, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community

    Get PDF
    Predicting if ecosystems will mitigate or exacerbate rising CO2 requires understanding how elevated CO2 will interact with coincident changes in diversity and nitrogen (N) availability to affect ecosystem carbon (C) storage. Yet achieving such understanding has been hampered by the difficulty of quantifying belowground C pools and fluxes. Thus, we used mass balance calculations to quantify the effects of diversity, CO2, and N on both the total amount of C allocated belowground by plants (total belowground C allocation, TBCA) and ecosystem C storage in a periodically burned, 8-year Minnesota grassland biodiversity, CO2, and N experiment (BioCON). Annual TBCA increased in response to elevated CO2, enriched N, and increasing diversity. TBCA was positively related to standing root biomass. After removing the influence of root biomass, the effect of elevated CO2 remained positive, suggesting additional drivers of TBCA apart from those that maintain high root biomass. Removing root biomass effects resulted in the effects of N and diversity becoming neutral or negative (depending on year), suggesting that the positive effects of diversity and N on TBCA were related to treatmentdriven differences in root biomass. Greater litter production in high diversity, elevated CO2, and enhanced N treatments increased annual ecosystem C loss in fire years and C gain in non-fire years, resulting in overall neutral C storage rates. Our results suggest that frequently burned grasslands are unlikely to exhibit enhanced C sequestration with increasing atmospheric CO2 levels or N deposition

    A global perspective on the trophic geography of sharks

    Get PDF
    Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.This research was conducted as part of C.S.B.’s Ph.D dissertation, which was funded by the University of Southampton and NERC (NE/L50161X/1), and through a NERC Grant-in-Kind from the Life Sciences Mass Spectrometry Facility (LSMSF; EK267-03/16). We thank A. Bates, D. Sims, F. Neat, R. McGill and J. Newton for their analytical contributions and comments on the manuscripts.Peer reviewe
    corecore