61 research outputs found

    A model of adaptive decision making from representation of information environment by quantum fields

    Full text link
    We present the mathematical model of decision making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioral, and geo-political factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are of the purely informational nature. The QFT-model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism (QBism). We demonstrate the quantum-like interference effect in DM which is exhibited as a violation of the formula of total probability and hence the classical Bayesian inference scheme.Comment: in press in Philosophical Transactions

    Episodic Source Memory over Distribution by Quantum-Like Dynamics – A Model Exploration

    Get PDF
    In source memory studies, a decision-maker is concerned with identifying the context in which a given episodic experience occurred. A common paradigm for studying source memory is the ‘three-list’ experimental paradigm, where a subject studies three lists of words and is later asked whether a given word appeared on one or more of the studied lists. Surprisingly, the sum total of the acceptance probabilities generated by asking for the source of a word separately for each list (‘list 1?’, ‘list 2?’, ‘list 3?’) exceeds the acceptance probability generated by asking whether that word occurred on the union of the lists (‘list 1 or 2 or 3?’). The episodic memory for a given word therefore appears over distributed on the disjoint contexts of the lists. A quantum episodic memory model [QEM] was proposed by Brainerd, Wang and Reyna [8] to explain this type of result. In this paper, we apply a Hamiltonian dynamical extension of QEM for over distribution of source memory. The Hamiltonian operators are simultaneously driven by parameters for re-allocation of gist-based and verbatim-based acceptance support as subjects are exposed to the cue word in the first temporal stage, and are attenuated for description-dependence by the querying probe in the second temporal stage. Overall, the model predicts well the choice proportions in both separate list and union list queries and the over distribution effect, suggesting that a Hamiltonian dynamics for QEM can provide a good account of the acceptance processes involved in episodic memory tasks

    Do preferences and beliefs in dilemma games exhibit complementarity?

    Get PDF
    Blanco et. al. (2014) show in a novel experiment the presence of intrinsic interactions between the preferences and the beliefs of participants in social dilemma games. They discuss the identification of three effects, and we claim that two of them are inherently of non-classical nature. Here, we discuss qualitatively how a model based on complementarity between preferences and beliefs in a Hilbert space can give an structural explanation to two of the three effects the authors observe, and the third one can be incorporated into the model as a classical correlation between the observations in two subspaces. Quantitative formalization of the model and proper fit to the experimental observation will be done in the near future, as we have been given recent access to the original dataset

    Thrombospondins in the heart: potential functions in cardiac remodeling

    Get PDF
    Cardiac remodeling after myocardial injury involves inflammation, angiogenesis, left ventricular hypertrophy and matrix remodeling. Thrombospondins (TSPs) belong to the group of matricellular proteins, which are non-structural extracellular matrix proteins that modulate cell–matrix interactions and cell function in injured tissues or tumors. They interact with different matrix and membrane-bound proteins due to their diverse functional domains. That the expression of TSPs strongly increases during cardiac stress or injury indicates an important role for them during cardiac remodeling. Recently, the protective properties of TSP expression against heart failure have been acknowledged. The current review will focus on the biological role of TSPs in the ischemic and hypertensive heart, and will describe the functional consequences of TSP polymorphisms in cardiac disease

    The Quantum Mind: Alternative Ways of Reasoning with Uncertainty

    Get PDF
    © 2018, Ontario Institute for Educational Studies (OISE). Human reasoning about and with uncertainty is often at odds with the principles of classical probability. Order effects, conjunction biases, and sure-thing inclinations suggest that an entirely different set of probability axioms could be developed and indeed may be needed to describe such habits. Recent work in diverse fields, including cognitive science, economics, and information theory, explores alternative approaches to decision theory. This work considers more expansive theories of reasoning with uncertainty while continuing to recognize the value of classical probability. In this paper, we discuss one such alternative approach, called quantum probability, and explore its applications within decision theory. Quantum probability is designed to formalize uncertainty as an ontological feature of the state of affairs, offering a mathematical model for entanglement, de/coherence, and interference, which are all concepts with unique onto-epistemological relevance for social theorists working in new and trans-materialisms. In this paper, we suggest that this work be considered part of the quantum turn in the social sciences and humanities. Our aim is to explore different models and formalizations of decision theory that attend to the situatedness of judgment. We suggest that the alternative models of reasoning explored in this article might be better suited to queries about entangled mathematical concepts and, thus, be helpful in rethinking both curriculum and learning theory
    • …
    corecore