Do preferences and beliefs in dilemma games exhibit complementarity?

I. Martínez-Martínez, J. Denolf, and A. Barque-Duran

QI15

Introduction

- Start from "Preferences and beliefs in a sequential social dilemma: a within-subjects analysis." (Blanco, et.al., 2014)
- Results seemed promising for a quantum model

Introduction

- Start from "Preferences and beliefs in a sequential social dilemma: a within-subjects analysis." (Blanco, et.al., 2014)
- Results seemed promising for a quantum model
- Work in progress. Some problems, advice needed!
(1) Introduction
(2) The experiment
- The game
- The experiment
(3) Three effects
- FM and SM correlation
- Consensus effect
- Reasoned player
(4) QP\&B model
- The measurements
- Three effects revisited
- Dimension of the belief basis?
- QP\&B model
(5) Discussion and future plans

The game

The game

- Prisoner Dilemma variant, 2 players
- Sequential: first FM, then SM
- 'No unconditional cooperation'

```
The game
The experiment
```


The game

- Prisoner Dilemma variant, 2 players
- Sequential: first FM, then SM
- 'No unconditional cooperation'

The experiment

- Each participants plays both roles: first SM, then FM. Paired randomly

The experiment

- Each participants plays both roles: first SM, then FM. Paired randomly
- Different conditions:
\rightarrow "How many opponents did, according to you, cooperate?"
\rightarrow Feedback

The experiment

- Each participants plays both roles: first SM, then FM. Paired randomly
- Different conditions:
\rightarrow "How many opponents did, according to you, cooperate?"
\rightarrow Feedback

Treatment	Baseline	Elicit_Beliefs	True_Distribution
Task 1	2nd move	2nd move	2nd move
Feedback $\left(a_{-i}^{S M}\right)$	No	No	Yes
Task 2	1st move	beliefs $\left(a_{-i}^{S M}\right)$	1st move
Task 3	beliefs $\left(a_{-i}^{F M}\right)$	1st move	beliefs $\left(a_{-i}^{F M}\right)$
N. Participants	40	60	60

Introduction
The experiment
Three effects
QP\&B model
Discussion and future plans

FM and SM correlation
Consensus effect
Reasoned player

FM and SM correlation

FMCR and SMCR

FM and SM correlation

FMCR and SMCR

- Positive correlation
- Significant in all conditions
- Discussed in original paper

Consensus effect

SMCR and beliefs

Consensus effect

SMCR and beliefs

- Beliefs are biased towards actions (driven by preferences)
- Focus of original paper
- Seen as social projection by Busemeyer \& Pothos (2012), suitable for a quantum model

Reasoned player

Beliefs and FMCR

Introduction

Reasoned player

Beliefs and FMCR

- Forcing a player to form an opinion, changes the player

Reasoned player

Beliefs and FMCR

- Forcing a player to form an opinion, changes the player
- Seen in an order effect

Treatment	Baseline	Elicit_Beliefs	True_Distribution	Total
First mover (FM)	27.5%	55.0%	56.7%	48.8%
Second mover (SM)	55.0%	53.3%	55.0%	54.4%

Reasoned player

Beliefs and FMCR

- Forcing a player to form an opinion, changes the player
- Seen in an order effect

Treatment	Baseline	Elicit_Beliefs	True_Distribution	Total
First mover (FM)	27.5%	55.0%	56.7%	48.8%
Second mover (SM)	55.0%	53.3%	55.0%	54.4%

- Equivalent to full information
- Measurement influences the system

The measurements

- FM measurement $\rightarrow\left\{\left|a_{C}^{F M}\right\rangle,\left|a_{D}^{F M}\right\rangle\right\}$
- SM measurement $\rightarrow\left\{\left|a_{C}^{F M}\right\rangle,\left|a_{D}^{F M}\right\rangle\right\}$

The measurements

- FM measurement $\rightarrow\left\{\left|a_{C}^{F M}\right\rangle,\left|a_{D}^{F M}\right\rangle\right\}$
- SM measurement $\rightarrow\left\{\left|a_{C}^{F M}\right\rangle,\left|a_{D}^{F M}\right\rangle\right\}$
- Belief measurement $\rightarrow\{|?\rangle\}$

The measurements

- FM measurement $\rightarrow\left\{\left|a_{C}^{F M}\right\rangle,\left|a_{D}^{F M}\right\rangle\right\}$
- SM measurement $\rightarrow\left\{\left|a_{C}^{F M}\right\rangle,\left|a_{D}^{F M}\right\rangle\right\}$
- Belief measurement $\rightarrow\{|?\rangle\}$
- Build the Hilbert Space by modeling the three effects

Introduction
The experiment
Three effects
QP\&B model
Discussion and future plans

Three effects revisited

FM \& SM correlation:

Three effects revisited

FM \& SM correlation:

- Classical correlation, can be measured at the same time
- In \mathbb{H}^{4} spanned $\left\{\left|a_{i}^{F M}\right\rangle \otimes\left|a_{j}^{S M}\right\rangle\right\}$
- Not unlike Pothos and Busemeyer (2009)

Introduction
The experiment
Three effects
QP\&B model
Discussion and future plans

Three effects revisited

Consensus effect:

Three effects revisited

Consensus effect:

- SM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{C E}$.

```
The measurements
Three effects revisited
Dimension of the belief basis?
QP&B model
```


Three effects revisited

Consensus effect:

- SM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{C E}$.
- Form of Social Projection. (Busemeyer \& Pothos (2012))

```
The measurements
Three effects revisited
Dimension of the belief basis?
QP&B model
```


Three effects revisited

Consensus effect:

- SM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{C E}$.
- Form of Social Projection. (Busemeyer \& Pothos (2012)) Reasoned player:

Three effects revisited

Consensus effect:

- SM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{C E}$.
- Form of Social Projection. (Busemeyer \& Pothos (2012)) Reasoned player:
- FM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{R P}$.

Three effects revisited

Consensus effect:

- SM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{C E}$.
- Form of Social Projection. (Busemeyer \& Pothos (2012)) Reasoned player:
- FM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{R P}$.
- Forming the belief opinion changes the player, seen in the order effect

Three effects revisited

Consensus effect:

- SM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{C E}$.
- Form of Social Projection. (Busemeyer \& Pothos (2012))

Reasoned player:

- FM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{R P}$.
- Forming the belief opinion changes the player, seen in the order effect

Tensoring the SM and FM bases of $\mathbb{H}^{C E}$ and $\mathbb{H}^{R P}$ gives us the required Hilbert Space $\mathbb{H}^{C E} \otimes \mathbb{H}^{R P}$.

Three effects revisited

Consensus effect:

- SM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{C E}$.
- Form of Social Projection. (Busemeyer \& Pothos (2012)) Reasoned player:
- FM and beliefs are complementary measurements.
- Different bases in the Hilbert space $\mathbb{H}^{R P}$.
- Forming the belief opinion changes the player, seen in the order effect

Tensoring the SM and FM bases of $\mathbb{H}^{C E}$ and $\mathbb{H}^{R P}$ gives us the required Hilbert Space $\mathbb{H}^{C E} \otimes \mathbb{H}^{R P}$.
This tensoring also defines the belief base of $\mathbb{H}^{C E} \otimes \mathbb{H}^{R P}$.

Introduction

Dimension of the belief basis?

- Belief measurement has 10 possible outcomes \rightarrow dimension too high

Dimension of the belief basis?

- Belief measurement has 10 possible outcomes \rightarrow dimension too high
- 'estimates the probability a player thinks his opponent will cooperate or defect'

Dimension of the belief basis?

- Belief measurement has 10 possible outcomes \rightarrow dimension too high
- 'estimates the probability a player thinks his opponent will cooperate or defect' (does this work?)
\rightarrow Beliefbasis (and $\mathbb{H}^{C E}$ and $\mathbb{H}^{R P}$) 2 dimensional

Dimension of the belief basis?

- Belief measurement has 10 possible outcomes \rightarrow dimension too high
- 'estimates the probability a player thinks his opponent will cooperate or defect' (does this work?)
\rightarrow Beliefbasis (and $\mathbb{H}^{C E}$ and $\mathbb{H}^{R P}$) 2 dimensional
- EX: Player thinks 7 opponents cooperate:

QP\&B model

- Player is represented by a state vector in $\mathbb{H}^{4}=\mathbb{H}^{2} \otimes \mathbb{H}^{2}$, spanned by $\left\{\left|a_{i}^{F M}\right\rangle \otimes\left|a_{j}^{S M}\right\rangle\right\}$.

QP\&B model

- Player is represented by a state vector in $\mathbb{H}^{4}=\mathbb{H}^{2} \otimes \mathbb{H}^{2}$, spanned by $\left\{\left|a_{i}^{F M}\right\rangle \otimes\left|a_{j}^{S M}\right\rangle\right\}$.
- FM action is asscoiated with the planes $\left|a_{C}^{F M}\right\rangle \otimes\left|a_{j}^{S M}\right\rangle$ and $\left|a_{D}^{F M}\right\rangle \otimes\left|a_{j}^{S M}\right\rangle$.
- $S M$ action is asscoiated with the planes $\left|a_{i}^{F M}\right\rangle \otimes\left|a_{C}^{S M}\right\rangle$ and $\left|a_{j}^{F M}\right\rangle \otimes\left|a_{D}^{S M}\right\rangle$.

QP\&B model

- Player is represented by a state vector in $\mathbb{H}^{4}=\mathbb{H}^{2} \otimes \mathbb{H}^{2}$, spanned by $\left\{\left|a_{i}^{F M}\right\rangle \otimes\left|a_{j}^{S M}\right\rangle\right\}$.
- FM action is asscoiated with the planes $\left|a_{C}^{F M}\right\rangle \otimes\left|a_{j}^{S M}\right\rangle$ and $\left|a_{D}^{F M}\right\rangle \otimes\left|a_{j}^{S M}\right\rangle$.
- SM action is asscoiated with the planes $\left|a_{i}^{F M}\right\rangle \otimes\left|a_{C}^{S M}\right\rangle$ and $\left|a_{j}^{F M}\right\rangle \otimes\left|a_{D}^{S M}\right\rangle$.
- In \mathbb{H}^{4} we have 2 orthogonal planes B_{C} en B_{D}.
- Bundle of planes spanned by B_{C} and B_{D}, contains the planes associated with belief measurement.

Discussion and future plans

- Correlation/proportions of FMCR and SMCR are modeled within the state vector

Discussion and future plans

- Correlation/proportions of FMCR and SMCR are modeled within the state vector
- Relation between beliefs and actions are modeled by the angles between the beliefplanes and actionplanes.

Discussion and future plans

- Correlation/proportions of FMCR and SMCR are modeled within the state vector
- Relation between beliefs and actions are modeled by the angles between the beliefplanes and actionplanes.
- Fit is promising:

