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Abstract Human reasoning about and with uncertainty is often at odds with the principles of 
classical probability. Order effects, conjunction biases, and sure-thing inclinations suggest that an 
entirely different set of probability axioms could be developed and indeed may be needed to describe 
such habits. Recent work in diverse fields, including cognitive science, economics, and information 
theory, explores alternative approaches to decision theory. This work considers more expansive 
theories of reasoning with uncertainty while continuing to recognize the value of classical probability. 
In this paper, we discuss one such alternative approach, called quantum probability, and 
explore its applications within decision theory. Quantum probability is designed to formalize 
uncertainty as an ontological feature of the state of affairs, offering a mathematical model for 
entanglement, de/coherence, and interference, which are all concepts with unique onto-epistemological 
relevance for social theorists working in new and trans-materialisms. In this paper, we suggest 
that this work be considered part of the quantum turn in the social sciences and humanities. Our aim 
is to explore different models and formalizations of decision theory that attend to the situatedness of 
judgment. We suggest that the alternative models of reasoning explored in this article might be better 
suited to queries about entangled mathematical concepts and, thus, be helpful in rethinking both 
curriculum and learning theory. 
 
 
1. Introduction 
 
Reasoning with and about uncertainty is a complex affair. One might argue that all 
reasoning entails some measure of uncertainty, since choices and actions involve 
ambivalence, conflicted feelings, and lack of knowledge. Indeed it may be that everyday 
decisions, which appear fairly automatic and without deliberation, are ground in micro-
perceptual calibrations of our sensory milieu, processed below the level of consciousness. 
If there is a kind of “probability in the wild” operating at various micro-scales, much of 
what we name as “reasoning” may in fact be essentially pre-individual (Hansen, 2015). 
The question is then whether uncertainty might be better considered in terms of a 
fundamental indeterminacy at work in the material world, like the random swerve 
proposed by Lucretius (c. 100-c. 55 BC) or quantum indeterminacy described by Niels 
Bohr. Philosophers of science such as Karen Barad (2007, 2012) have argued that this 
ontological perspective demands new ways of conceiving the mathematics of chance.  
 
In this paper we explore quantum probability (QP) as a possible alternative formalisation 
of reasoning with uncertainty. QP was formulated by John Von Neumann in the 1920s as 
a way of describing quantum mechanics. Trueblood et al. (2011) argue that a quantum 
approach to human judgment is compelling because (a) judgment is a responsive action 
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and not simply an accessing of stored information, (b) judgments disturb the learning 
environment and the distributed cognition across the given situation, (c) judgments 
impact future judgments, and thus order of judgments matters, and (d) human judgments 
do not follow the commutative rule of classical probability. 
 
We explore the implications of this work for learning theory, suggesting that alternative 
formalizations of probability offer different insights into human reasoning. We turn to 
recent applications of quantum probability in psychology, exploring the ways that human 
judgment has been conceptualized as a kind of quantum behaviour. Researchers in 
diverse fields are investigating the implications of this alternative approach, including 
economics, information theory, cognitive science, and machine learning (see Pothos & 
Busemeyer 2013 for a full list of references). The idea that quantum mechanics might be 
a source for rethinking cognition is not new – the physicist Niels Bohr himself suggested 
that quantum theory might offer insight into the nature of cognition (Wang et al., 2013) 
as did Schrödinger in his now classic 1944 book What is life? We pursue this study of 
probability as part of our project in inclusive materialism (de Freitas & Sinclair, 2014), 
exploring the way that mathematical concepts are implicated in particular material and 
embodied practices. 
 
Our interest in exploring the formalisms of quantum probability derives in part from our 
commitment to imagine the quantum at all scales. We want terms like entanglement, 
diffraction, and de/coherence to be more than mere metaphors, and we see a need to dig 
deeper into the mathematics of quantum ontology. Moreover, our work seeks to show 
how mathematics itself – at the level of concept, model, form – is implicated in the socio-
material theories we use at other scales. For these reasons, we decided to find out what 
specifically was happening in mathematical quantum models. QP operates through a 
geometric approach, rather than a set-theoretic approach. The ‘objects’ of this geometry 
are vectors, which entails a vector algebra with different operators and different kinds of 
relationality, related to complex numbers. Most importantly for our purposes, QP offers 
logical and mathematical formulations of concepts such as entanglement, superposition, 
incompatibility and interference, which are all distinctive characteristics of quantum 
systems with its unique onto-epistemological associations and relevance for social 
theorists working in new and trans-materialisms.  
 
  
2. The limits of classical probability 
 
Hacking (1975) recounts how the mathematics of chance has always had a dual nature, 
being both epistemic and ontological, the first aligned with theoretical laws of probability 
and the second aligned with empirical experiments and the measurements of 
frequencies.1 The emergence of quantum physics in the twentieth century further 
complicated this onto-epistemological mixture. Since quantum mechanics defies the 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  This	
  distinction	
  is	
  sometimes	
  referred	
  to	
  as	
  Bayesian	
  versus	
  frequentist.	
  In	
  this	
  paper,	
  we	
  explore	
  
alternative	
  kinds	
  of	
  probability	
  (focusing	
  on	
  quantum	
  models).	
  There	
  are	
  many	
  other	
  types	
  of	
  
probability	
  as	
  well	
  and,	
  as	
  Gillies	
  (2000)	
  argues,	
  they	
  may	
  each	
  offer	
  valid	
  interpretations	
  of	
  the	
  
particular	
  contexts	
  from	
  which	
  they	
  emerge.	
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causal logic of classical Newtonian science, and puts forward a new image of 
simultaneity and presence (of both here and not here), it breaks with classical probability 
models.  
 
Classical probability (CP) is captured in the Kolmogorov axioms which stipulate that (1) 
probability is a non-negative real number, (2) the probability of the entire sample space is 
1, and (3) the probability of the union of a countably infinite set of mutually exclusive 
events is equivalent to the sum of the probabilities of each of the events. Children are 
typically initiated into the logic of CP using examples that allow for frequency testing, so 
as to prove empirically that the model is accurate and true. Notably for our purposes, 
issues of total probability, order effects, and conditional conjunctions become pivotal 
learning moments in developing skills associated with reasoning about chance. These 
facets of CP  – rules regarding the distribution of probabilities across outcomes, and the 
impact of order and conjunction on probability – are often a source of difficulty for 
children learning about probability (see, for example, Fischbein & Schwartz, 1997; 
Watson & Moritz (2002).  
 
Unfortunately, or perhaps predictably, humans do not always reason according to the 
rules of CP (see Cosmides & Tooby (1996) on potential evolutionary reasons for this). 
Sutherland (2007) presents numerous examples of doctors and judges and juries 
violating these rules, whether it be ignoring the conditional base in a particular 
context, or revealing an “irrational” order bias when asked a series of questions about 
the likelihood of an outcome. For example, in the famous Linda problem, studied by 
Tversky and Kahneman (1983), participants are given this information: “Linda is 31 
years old, single, outspoken and very bright. She majored in philosophy. As a student, 
she was deeply concerned with issues of discrimination and social justice, and also 
participated in anti-nuclear demonstrations.” Research participants are then asked “Is 
Linda more likely to be (a) a bank teller or (b) active in the feminist movement and a 
bank teller.” In classical probability, the probability of the conjunction will always be 
less than the probability of either of the individual events: 𝑃 𝐴 ∩ 𝐵 ≤ 𝑃(𝐴). In other 
words, people should answer that it is more likely that she is a bank teller. And yet the 
study shows that 90% of respondents select (b). Other similar experiments related to 
medical judgments, predicting the results of sporting events and making risky choices 
show the same tendencies, revealing how these violations are widespread and 
persistent (Tversky & Kahneman, 1983).  
 
It may be that we want people to reason according to classical probability, but a large 
body of evidence suggests that people do not (Kahneman et al. 1982; Tversky & Shafir 
1992). Rather than simply dismiss this large body of evidence as though it pointed to 
human irrationality or incoherence, or offer some adhoc explanation regarding the 
language used in such questions, growing interest in alternative formalisations of 
probability has emerged. Various decision theories have attempted to address these habits 
of thought. Query theory, fuzzy trace theory and integration theory are all formalisations 
that alter the rules of CP in order to better capture the way that people reason about 
complex lived events. What is considered paradoxical from the perspective of CP, and 
what is seen as widespread violation of the laws, may in fact be evidence of an alternative 
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way of reasoning with uncertainty: “if we are to understand the intuition behind human 
judgment in such situations, we have to look for an alternative probabilistic framework” 
(Pothos & Busemeyer, 2013, p. 257). Before unpacking some of the recent work in 
quantum decision theory, we first situate this work as part of a quantum turn in the social 
sciences. 
 
3. The quantum turn 
 
The philosopher of science Karen Barad (2007) argues that quantum mechanics and field 
theory set the stage for an entirely new kind of social science in the 21st century. She 
invites us to think about how quantum behaviour, which has been observed in the 
microscopic level of subatomic particles, can also produce effects in large-scale systems.  
She asks us to consider how we might live post-quantum causality? How we might mesh 
sub-atomic and organic temporality? In what ways can we reconceive the very notion of 
relationality in light of quantum science? It’s important for Barad that this is not simply a 
matter of recognizing the way that measurements ‘disturb’ the behaviour of that which is 
studied, that is, disturb what would have happened in the absence of such a measurement 
(de Freitas, 2017).2 In interpreting the surprising findings of quantum mechanics 
experiments, Barad contrasts two perspectives, Heisenberg and Bohr. Whereas for 
Heisenberg, quantum physics shows us the limits of our knowledge, and the 
epistemological limits of what we are able to experience or understand, for Bohr quantum 
science shows an inherent indeterminacy in matter. In other words, Bohr’s interpretation 
insists that there are no separable isolated entities that can be observed from outside, and 
thus “entities” do not have a fixed inherent nature (wave or particle or spin). Duality of 
wave and particle – and indeterminacy more generally – is inherent to matter.  
 
Barad (2012a) states very clearly that she is not “applying quantum physics to the social 
world by drawing analogies between tiny particles and people” for that would be a 
simplistic misuse of both theory and practice (p. 17). She emphasizes that there are not 
two domains (the microscopic and the macroscopic) with two different ontological 
principles. Thus she claims that quantum ontology is directly (and not simply 
analogically) relevant to every day matters—and that if this is not commonly evident, it is 
in part because quantum effects are very difficult to observe. Although research methods 
in the social sciences have begun to turn to the more-than-human in studying intra-
activity, Barad (2012b) suggests we need to interrogate the very nature of causality, 
origin, relationality and change. Recent findings in ecology do suggest that systems 
operate according to a quantum model that includes complementarity and non-locality, as 
evidenced in causal effects that happen faster than the speed of light. For example, “birds 
exploit non-local connections with the earth’s magnetic field to help them navigate … 
plants exploit quantum effects in photosynthesis … fruit flies sense of smell relies on the 
ability to detect quantum vibrations in smelly molecules …” (Wendt, 2015, p. 135). 
These examples suggest that a quantum paradigm might explain diverse kinds of 
behaviour and discernment (Atmanspacher, 2013; Grace & Kemp, 2013).  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Indeed, Barad argues that the results of experiments conducted with the Stern-Gerlach apparatus, which 
measures the spin of particles along different axes, do not make sense if interpreted using Heisenberg’s 
assumption that measurement disturbs particles (see pp. 258-263).	
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It was through the philosopher of mind Alexander Wendt (2015) that we were introduced 
to the vast research on quantum cognition, quantum brain science, and quantum 
probability. Wendt argues for a new quantum paradigm to better unify physical and social 
ontology, pursuing both a “quantum vitalism” and a “vitalist sociology” (p. 33). He 
argues for a “fundamental mentality” such that “mind is already inherent in every 
electron” and matter is intrinsically minded (p. 29-31). Such a perspective can be 
described as a kind of panpsychism that takes the known effect of consciousness at the 
macroscopic level and “scales it downward” (p. 31). He is principally focused on how 
quantum ontology offers an alternative theoretical framework for the study of 
consciousness, but not simply as a form of epistemic limitation. Like Barad, he lines up 
with Bohr in the debate with Heisenberg, and his project aims to show how cognition is 
entailed in quantum ontology. 
 
The concept of quantum coherence is crucial for Wendt’s approach. He suggests that 
life is a “macroscopic instantiation of quantum coherence”. We are walking wave 
functions capable of carrying coherently incompatible potentialities; the collapse of a 
wave function into actuality (in the form of human action, decision and measurement) 
brings us into the “incoherent” world, which is separated out into individuals, actions, 
decisions, etc. In other words, quantum coherence designates the virtual side of matter 
where incompatible potentialities (wave and particular) are able to cohere and coexist. 
The state of quantum coherence is then actualized in individuated conscious states – 
decisions, actions, etc. According to this approach, individuation (of a conscious 
mind) is an after-effect of an inherent indeterminacy in matter, which is not spent or 
exhausted in the articulation of a decision or individual, but remains as a kind of 
originating vibrational energy.  
 
We focus here on de/coherence because it is directly relevant to our later exploration 
of decision/actions and judgments. The coherence of organisms, suggests Wendt 
(2015), entails a pre-individual quantum superposition of coherent potentialities over 
all space-time domains (all possible actualizations), each correlated with one another 
and with the whole, and yet independent of the whole. In other words, the quantum 
coherent state, which is the pre-individual state, maximizes both global cohesion (by 
containing the superposition of diverse and even contradictory states) and local 
freedom (by fueling the active principle that individuates choice, decision and action). 
This richly textured virtual field of quantum coherence “underlies the sensitivity of 
living systems to weak signals, and their ability to intercommunicate and respond with 
great rapidity.” (Ho in Wendt, p. 139)  

 
Quantum coherence is a kind of heterogeneous holism that allows us to reconsider the 
nature of reason and judgment. Such an approach offers new ways of thinking about the 
future, remixing the temporal flow of time, and re-distributing the here-now across all 
possible states. This invites speculation about the means by which reasoned decisions and 
actions are undergone. Wendt is not arguing metaphorically, nor focusing only on the 
unusual behaviour of the sub-atomic, but is taking a realist position about quantum 
relationality. Wendt’s project is somewhat different from that of new materialists such as 
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Barad (2007) because he is focused on the problem of consciousness and subjectivity, 
and because he uses quantum coherence to distinguish life from non-life. His attention to 
cognition, however, pushes the quantum paradigm in new directions, as we consider 
alternative models for reasoning with uncertainty.  
 
What would it look like to operate according to a quantum model of reasoning? What 
kind of logic would accurately capture the machinations of a quantum mind? How would 
decisions and judgments be achieved if they followed a quantum logic rather than a 
classical one?  The fact that cognitive models must reckon with our deeply situated 
knowledges makes the quantum paradigm very appealing: “In quantum physics, 
superposition appears puzzling: what does it mean for a particle to have a potentiality for 
different positions, without it actually existing at any particular position? By contrast, in 
psychology, superposition appears to be an intuitive way to characterize the fuzziness 
(the conflict, ambiguity, and ambivalence) of everyday thought” (Pothos & Busemeyer, 
2013, p. 256). In the next section we turn to comparisons between classical and quantum 
probability models and their relevance to cognitive science. Our aim is to explore, 
tentatively, the possibility that quantum probability models might shed light on thinking 
and learning, and to gauge the extent to which QP seems to offer a better formal 
mathematical system for characterizing the situatedness of judgment.  
 
We ask the reader to bear in mind, however, that any formal system will involve massive 
limitations and brutal simplifications. Probabilistic models of cognition are top-down – 
any such formalism will misrecognize much of the dynamic nature of events. But our aim 
is not to argue that quantum probability explains human judgment definitively – as that 
would go against the grain of the quantum – but rather to trouble reliance on classical 
probability and to invite speculation and experiment around different ways of reasoning 
with uncertainty.  
 
3. Reasoning and probability 
 
Classical (Bayesian) probability theory has strongly influenced models of cognition, 
inference, and learning. And yet there has always been ample evidence to suggest that 
human judgment rests on other kinds of inference that cannot be adequately described by 
the subjective ‘corrections’ of Bayesian probability. Wendt highlights three aspects of 
decision-making that arise from the work of Kahneman and colleagues in psychology. 
One involves the “order effect” in which the value that people ascribe to two events 
depends on the order in which the event is presented to them. Non-commutative 
reasoning is often at work when people assign probabilities to uncertain events or when 
people are asked to compare one thing to another, especially in cases when the events are 
not independent. The second is the “conjunction error” (referred to above in relation to 
the Linda problem) in which people think a given event A is less likely than the 
combination of two events A and B. Finally, the third aspect relates to the disjunction 
error and concerns the way people reason about unknown or hypothetical contexts. This 
is known as the “sure thing” principle, described by Savage (1954) as follows: “If under 
state of the world X, people prefer action A over action B and in state of the world ~X 
people prefer action A over B, then if the state of the world is unknown, a person should 
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always prefer action A over B.” Despite it being a ‘sure thing’, persistent evidence 
suggests that humans do not follow the principle in practice. Increasingly, researchers are 
exploring quantum probability theory to account for the preponderance of human 
judgments that do not follow classical probability, including the sure thing axiom of 
decision making (Pothos & Busemeyer, 2009), and order and conjunctive fallacies 
(Franco, 2009; Busemeyer et al, 2011). 
 
Quantum probability (QP) is simply a way of assigning probabilities to events, but it does 
so quite differently from classical probability (CP). In other words, it offers an alternative 
formalization of reasoning with uncertainty. This alternative approach links uncertainty 
to indeterminacy in ways that open up new onto-epistemologies, better attending to the 
situatedness of reasoning. Knowledge states in QP are considered indeterminate in that 
there is a superpositioning of different possible outcomes (decisions, actions) associated 
or even entailed (virtually) in these states. Because such states are in fact dynamic 
mixtures of potentiality, they are not consistent with any one action or decision in the 
conventional sense (Pothos & Busemeyer, 2013, p. 256). Classical probability represents 
knowledge as a discrete set of propositions correlated to a discrete set of outcomes. 
Quantum probability operates in a slightly messier way, and aims to capture the 
con/fusion inherent to knowledge, pointing to the underlying indeterminacy of 
phenomena, and tapping into the specific logic of quantum entanglement.  
 
In CP we can always form a meaningful conjunction of two propositions A and B. If we 
are able to determine the truth value of A and B independently, then we are able to 
determine the truth value of their conjunction. In quantum probability, however, there can 
be cases where the truth of such a conjunction is indeterminate. Our reasoning about 
complex events often involves incompatible insights that cannot be cobbled together to 
create a well-formed probability claim. In such cases, it may be that knowing the truth 
value of A implies not knowing the truth value of B. We might characterize this logical 
relation as 𝐴 ∩ (𝐵 ∪∼ 𝐵). Another way of presenting this is the statement: “If A is true at 
time t1, then B is neither true nor false at time t1.”  This  logical formulation captures 
Heisenberg’s uncertainty principle where A and B are position and momentum – the 
more we measure position, the less we can say about momentum. In classical probability, 
incompatibility is defined in excusive terms. Two events are incompatible if they 
contradict each other (A and ~A). The quantum concept of incompatibility is defined 
somewhat differently.3 Two events (A and B) are incompatible if there is a conditional 
entanglement between them that makes it impossible to pose well-formed questions about 
their conjunction. In order to determine 𝑃 𝐴 ∩ 𝐵  in such cases, quantum probability 
introduces sequential relations between A and B, but must also then formalise the 
interference of order effects. Because it attends to order effects, QP amplifies the richness 
of the event, and introduces sequential relations between knowledge claims, so that 
incompatible conjunctions can be evaluated for truth value.  
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  Notably,	
  Niels	
  Bohr	
  borrowed	
  the	
  notion	
  of	
  incompatibility	
  from	
  William	
  James	
  (Pothos	
  &	
  
Busemeyer,	
  2013).	
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One of the major potential contributions of QP to decision theory pertains to this revised 
concept of incompatibility. In QP, if two parameters are incompatible it is impossible to 
define a single question using their conjunction. In a given case study, there can be 
questions about an event that are perceived as incompatible, that is, the questions concern 
different variables for which knowledge is not coherently integrated. Determining what 
kinds of questions are incompatible is extremely tricky, and is a crucial lynchpin in any 
theory of quantum mind. This concept of incompatibility is thus fundamental in the 
making of quantum probability models, and disagreements about what constitutes 
incompatible parameters will lead to very different models (Hampton, 2013). 
 
Both CP and QP freeze the event in order to grapple with its possible outcomes, and in 
this they both fail to really capture the dynamism of the event (Behme, 2013). But, 
importantly, they impose very different models on that event. CP must freeze the event 
and treat outcomes as mutually distinct and meaningful within a single flat outcome 
space. All outcomes are compared within a space of complete knowledge in which 
being situated in one belief does not alter or curtail one’s ability to determine the truth 
of another belief (dependent events or beliefs are extracted one from the other using 
the rule for conditional probability). This approach fails to reckon with the 
fundamental ambivalence of all thought, and the inseparability of beliefs. In other 
words, CP does not offer a mathematics of chance that attends holistically to the onto-
indeterminacies that are immanent within all events.  
 
In the case of the Linda example discussed in section one, CP sees only a fallacy when 
there is surely some ‘good reason’ in choosing the second option (being a bank teller and 
a feminist) as the higher probability. We may simultaneously hold beliefs that cannot be 
disentangled, and yet the question demands we do so. 1980s beliefs about bank tellers 
and feminists might be of this kind. CP describes Linda’s condition prior to decision as a 
“mixed state”, referencing our lack of knowledge of her actual state. In other words, CP 
assumes that Linda is definitely a feminist or not a feminist, and we simply do not know, 
and must assign probabilities to the likelihood of one over the other. QP, on the other 
hand, describes Linda’s state prior to decision as superposition in which she is both, and 
yet neither, feminist and not-feminist: she is in an indefinite state with regard to any such 
disposition, simultaneously and unconsciously entertaining a differentiated position, and 
uncommitted to either in some pre-individual way, perhaps in a kind of trans-feminist 
state. 
 
Before exploring the actual models, we want to emphasize the onto-epistemology 
entailed in the QP approach. Decision is an inventive act in QP. Responses to questions 
like “Is she a feminist” or “Is she a bank teller?” do not entail pre-given masked 
conditions yet to be observed, but are rather formulated or constructed in the act of 
decision. Disambiguating a superposition state is an inventive process rather than an act 
of revelation of previously hidden states. The virtual space of superposition does not 
consist of a set of choices separated-out (and then mixed up like a bag of colour marbles), 
but is rather a space of holistic entanglement. The superposition state is not the same 
thing as the set of all possible outcomes (each with their own probabilistic weight); 
superposition describes the con/fused state of potentiality where there are no determinate 
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probabilities assigned to individual outcomes. In the description below we focus on the 
key issue of non-commutative actions/decisions, where order matters.  
 
 
4. The geometric model 
 
In 1900, during his famous lecture outlining twenty-three unsolved mathematical 
problems, David Hilbert called for a mathematical treatment of the axioms of 
mechanics and probability. This challenge became all the more daunting in the 1920s 
when quantum mechanics emerged and demanded new ways of formalizing causality 
and relationality. Attempts to formulate a set of mathematical axioms that might 
describe (and predict) quantum behaviour were proposed. Max Born, Pascual Jordan, 
along with Heisenberg, elaborated a matrix mechanics while Schrödinger outlined a 
wave mechanics. In 1926, the matrix mechanics and the wave mechanics formulations 
were shown to be mathematically equivalent.4 John von Neumann, who was for a time 
Hilbert’s assistant, developed what became the accepted mathematical formalism for 
quantum mechanics during the years 1926-1932. Known as “Hilbert space”, this 
approach, which was initially developed in consort with Hilbert, focused on the 
amplitudes for the density of relative probabilities.5 Hilbert spaces are vector spaces 
with particular properties that allow for accurate modeling of the strange behavior of 
sub-atomic life.  
 
Quantum probability is based on the mathematics of Hilbert spaces, and in this section 
we attempt to provide an overall sense of how this model works. Using vector geometry, 
we begin by imagining a multi-dimensional Hilbert space of superimposed concepts, 
events and situations, which all co-exist despite their incompatibility. The vector space 
represents all possible outcomes for questions that could be asked about the system. The 
vector space is a richly textured space whose geometry models the nature of quantum 
relationality. This space is decomposable into various basis vectors that are themselves 
incompatible – we position these basis vectors orthonormal to each other, and together 
they engender this complex space of superpositioning. We then draw one particular 
‘knowledge state vector’ that represents our current knowledge about some aspect of the 
situation. Each knowledge state vector is a kind of de/coherence. In the context of 
quantum theory, this knowledge state vector is given by an equation, a wave function ψ, 
that is a superposition of two eigenstates, which are solutions of the function. The 
knowledge state vector can be expressed in terms of scalar multiples of the basis vectors (
ψ = aX + bY), where X and Y are the basis vectors, and a and b are called the respective 
amplitudes; the sum of the squares of a and b (usually complex numbers) is equal to 1. 
The question of where to draw the vector, with what angle, is discussed below. To 
determine the probability that this state vector participates in the incompatible basis 
vectors, we project it onto them, and then calculate its magnitude.  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Though still today ambiguities remain over how to interpret the physical meaning of this mathematical 
equivalence (Barad, 2007).	
  
5	
  Von	
  Neumann	
  went	
  on	
  to	
  seek	
  alternatives	
  to	
  the	
  Hilbert	
  space	
  model.	
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In the context of cognitive modelling, Pothos and Busemeyer (2013) work through the 
famous Linda example, which we stay with, despite its awkwardness, for the sake of 
continuity. Let’s begin first with the question of whether Linda is a feminist. In this 
system there are two eigenstates (feminist/non-feminist), which correspond to two base 
vectors (see Figure 1a,). Linear combinations of these two base vectors produce the 
knowledge state vector ψ, whose length is 1, and which can form any angle with respect 
to the two base vectors (see Figure 1). In order to set up our geometrical model, we must 
first posit a wave function that contains the initial knowledge we have of the situation, 
which in turn enables us to determine the location of the knowledge state vector. In this 
context, given the description of Linda, it seems initially more likely that she is a 

feminist, so we decide to use the following wave function, ψ = !
!
ψ~f + !

!
ψf, which 

shows the direction according to the coefficients ¼ and ¾. We’ve chosen the coefficients 
so that the original state vector is placed at a 30° angle to ψf , since the height of the 

triangle is !
!
  and the base of the triangle is !

!
. Changing the initial knowledge about the 

system—called the “priors”—will change the wave function, which will change the 
position of the knowledge state vector. If we didn’t know as much about Linda, our 
“priors” might lead us to think that she is not more likely to be a feminist, so we might 

end up with a wave function such as this one: ψ = !
!
ψ~f + !

!
ψf which corresponds to 

the geometry in Figure 1b.  However, it’s crucial to recall that QP conceives her initial 
state prior to decision as a superposition in which she is both and yet neither, occupying 
all possible outcomes at once as a kind of trans-feminist. The initial state vector is meant 
to embody the entirety of these virtual potentialities, but represents a particular 
actualization (collapse of the wave function).  
 

	
   	
   	
  
Figure 1: (a) An initial knowledge state vector for “Is Linda a feminist?” (b) a different 

initial knowledge state vector for “Is Linda a feminist” 
 
When we ask the question, “Is Linda a feminist?”, the probability that she is a feminist 
will be calculated by projecting the knowledge state vector onto the basis vector ψf . The 
probability of Linda being a feminist will be the amplitude of the knowledge state vector 
along ψf, which in the case of Figure 1a is, √!

!

!
= !

!
.  

 
In the original Linda problem, we are actually asking a conjunction question: Is Linda a 
feminist and a bank teller? It’s precisely in the case of conjunction that the model begins 

ψ~f

ψf

1
4

3
4

α = 30°

ψ

ψ~f

ψf

ψ

α = 45°

1
2

1
2
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to be useful in better modeling non-commutative human reasoning. In QP, conjunction 
problems must be asked sequentially, so we first ask whether she’s a feminist and then 
we ask whether she’s a bank teller. Geometrically, this will involve introducing another 
pair of base vectors for back teller and not bank teller. The choice about how to position 
these relative to the feminist/~feminist basis vectors depends again on the “priors”. In 
Figure 2a, we have shown a positioning that is based on the supposition that while being 
a bank teller is not the most likely of professions for a 1980s feminist, it is not that 
unlikely either.  
 
In attending to order, we project sequentially, first asking whether Linda is a feminist 
(projecting onto ψf) and then asking whether she’s a bank teller (projecting onto ψbt). 
We can see that the sequential projections (going from Figure 2b to Figure 2c) results in a 
greater amplitude compared to the direct projection onto ψbt (shown in Figure 2d).  
	
  	
  	
  	
  

	
  
Figure 2: (a) Setting up the two subspaces for the Linda problem with four basis vectors, 

where v is the initial state vector (b) Projecting the knowledge state vector onto the 
feminist basis vector; (c) projecting the resulting vector onto the bank teller basis vector; 
(d) projecting the knowledge state vector onto the bank teller basis vector; (e) projecting 

the resulting vector onto the feminist state vector.  
 
The difference between Figure 2c and 2d is significant. Whereas in CP, the probability of 
the conjunction of two propositions should be smaller or equal to the probability of each 
of them, the geometry in this model offers a different result, a result that aligns with most 
people’s responses to the Linda experiment (see Kahneman et al., 1982). Further, if we 
had reversed the order, and started with the probability of Linda being a bank teller and 
then the probability of her being a feminist (projecting the state vector along ψbt onto ψf) 
we see that the result differs. In other words, the geometric model captures the order 
effect and kind of non-commutative logic that many people follow in reasoning about 
certain conjunctions, that is 𝑃(𝐹 ∩ 𝐵𝑇) ≠ 𝑃 𝐵𝑇 ∩ 𝐹  (compare Figure 2e with 2d). This 
shows how the QP model might help us with studying order effects more generally in 
decision theory. Although not well-captured in the geometric model, it’s important to 
note that order effects in quantum mechanics also entail a blurring of previous decisions 
as new decisions are made.6  
 
5. Discussion 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  This	
  blurring	
  might	
  help	
  shed	
  light	
  on	
  the	
  important	
  role	
  of	
  forgetting	
  in	
  learning	
  (de	
  Castro,	
  2013).	
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In thinking about using QP in such a context, several non-trivial structural assumptions 
must be made. As briefly mentioned, one must know how to place the initial knowledge 
state vector. When considering two parameters like feminist and bank teller, or asking 
two questions, one must also decide how the two subspaces are oriented to each other. 
These decisions will affect the actual values that are computed. Also mentioned above is 
the issue of how to decide whether two questions or concepts are incompatible. Pothos 
and Busemeyer  (2013) suggest that, “a heuristic guide of whether some questions should 
be considered compatible is whether clarifying one is expected to interfere with the 
evaluation of the other” (p. 259). But the fact is that very different starting assumptions 
will lead to very different results (Tenton & Crupi, 2013).  
 
The Linda problem is a classic problem in the study of human reasoning, and focuses on 
evaluating the likelihood of an object possessing two characteristics or qualities. We are 
very conscious of how the Linda problem strikes qualitative researchers as absurd, 
because it grossly simplifies the complex belief system that might undergird a decision 
about someone’s disposition. Moreover, we suspect that the alternative reasoning model 
explored in this article might be better suited to queries about entangled mathematical 
concepts. Such reasoning is clearly relevant for a much broader set of situations—indeed 
any situation in which we ask a student to discern whether an object is a member of two 
classes. For example, we might consider a situation that is similar to the Linda problem, 
which would involve asking a student a question such as “Do you think that an arbitrary 
number in the 100s chart can be both even and square?” As with the QP elaboration of 
the Linda problem, a student might consider it just as likely for a number to be even as 
odd, in which case the situation will be as in Figure 1b. Then the next two basis vectors 
(for square and ~square) might be placed in such a way that makes the ~square basis 
vector quite close to the original knowledge state vector. This might represent the 
situation in which the student believes that there are not many numbers that are also 
squares. Geometrically, we would obtain a situation similar to that in Figure 2e, which is 
shown in Figure 3. The student’s belief that a given number is even and is square is thus 
greater than the student’s belief that the given number is square. This kind of example 
might even be more salient since it deals with concepts rather than dispositions (Aerts et 
al, 2013). 

 
Figure 3: Geometric configuration for the question: Do you think that an arbitrary 
number in the 100s chart will be even and square? 

ψodd

ψeven

ψ~square

ψsquare

ψ
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In QP terms, the student’s beliefs are commingled, and the act of deciding (in response to 
the question) is the act of measurement. The student’s beliefs about the questions of 
evenness and squareness of a given number are incompatible if we assert that clarifying 
one question (yes, it is even) interferes with the evaluation of the other. Evenness and 
squareness are entangled concepts that are at this time—for the student—incompatible in 
that they cannot accurately disentangle one from the other. As they think they know or 
understand one (evenness) they lose sight of the other (squareness).  
 
These kinds of formalist models are of course wholly inadequate in capturing the truly 
complex process of discernment (Behme, 2013). Following a more inclusive materialism, 
such models might be more conducive to the study of entangled concepts whose rich 
indeterminism might make them con/fused and related (see Aerts et al 2013 for this 
approach). Perhaps these kinds of models can show how children are engaged with the 
inherent indeterminacy of concepts, as put forward in recent work in mathematics 
education (de Freitas & Sinclair, 2017). Such an approach might better address the intra-
active nature of the phenomenon – of the particle and the device, or the student and the 
question, of the concept with the other concept. Inclusive materialism (de Freitas & 
Sinclair, 2014) examines the way that student beliefs about number are not a property of 
the student, but belong to the phenomenon. The question doesn’t disclose pre-existing 
thoughts or beliefs, but rather creates a pedagogical condition for entangled concepts to 
be individuated: “it is the specific material configuration that gives definition to the 
notion of the property in question, enacts a cut between,” in our case, the two concepts 
(Barad, 2007, p. 264). The challenge of taking up QP in education research will be to 
pursue the rich implications of this onto-epistemological quantum turn.   
 
6. Conclusion 
 
Paradoxical findings in cognitive psychology, such as order and anchoring effects in 
human judgments, suggest that classical probability theory might be too limited to 
fully explain various aspects of human cognition (Trueblood et al., 2011, p. 1519). 
Increasingly, researchers are exploring quantum probability theory to account for the 
preponderance of human judgments that do not follow classical probability, including 
the sure thing axiom of decision making (Pothos & Busemeyer, 2009), and the 
conjunctive and disjunctive fallacies (Franco, 2009; Busemeyer et al, 2011). If 
ambiguity, ambivalence and fuzzy notions of truth are more accurate ways of 
describing our thinking, then perhaps the logic of quantum relationality offers a more 
suitable approach.  
 
We suspect that quantum probability might help reevaluate developmental evidence 
regarding children and learning. For instance, conventional interpretations of Piagetian 
tasks, when children incorrectly respond to the question “which container has more water 
in it?”, describe the children as distracted by physical and sensory parameters, and unable 
to abstract the formal concept of conservation (Inhelder & Piaget, 1958). We wonder if 
quantum probability models might shed a different light on such experiments. Perhaps 
these children are reasoning through uncertainty in ways that are at odds with classical 
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logic and abstraction. Indeed, it may be that they are mobilizing very different onto-
epistemologies in which uncertainty is directly linked to the inherent indeterminacy of 
concepts such as shape and number.  
 
In practice, inferences entail complex entanglements between possible outcomes, and 
any discovery of new evidence interferes in the process, while embodied mental states 
are often a superposition of incompatible potential outcomes rather than a rational 
choice of one outcome over another. Classical probability fails to adequately account 
for this complexity, and considers all deviations from its logic as fallacious. Quantum 
probability, on the other hand, is designed to formalize this kind of complexity, and is 
derived from the behaviour of sub-atomic particles. Classical probability considers 
uncertainty an epistemic limitation, and accordingly, it measures degrees of certainty. 
Quantum probability, on the other hand, treats uncertainty as an ontological feature of 
the state of affairs. In this case, measures of uncertainty are realist measures of an 
environment in which outcomes are literally mixed together in varying intensity. This 
follows the Bohr insights in quantum physics, in which the fact that matter is both 
particle and wave is an inherent indeterminism, and not simply a limitation of our 
measurement or our human understanding.  
 
Such foundational indeterminism means that an entangled system defies prediction 
when relying on the usual probability distribution of possible outcomes. The law of 
total probability (which is fundamental to Bayesian modelling) is violated. Order 
effects, conjunction biases, and sure-thing inclinations suggest that an entirely 
different set of probability axioms could be developed and may be needed to account 
for reasoning with and about uncertainty. The fuzzy logic that seems to describe our 
habits of reasoning is indeed physically manifest in quantum mechanics, and 
motivates the turn to a quantum probability to rethink cognition. This is not to cast 
classical probability out the window, since it’s clearly a fruitful and important way of 
reasoning with uncertainty (Shanteau & Weiss, 2013). Quantum probability actually 
subsumes classical probability (as a particular case), while also addressing non-
classical behaviour. Quantum decision theory builds on this alternative approach to 
probability, and applies it to human judgment. We hope this brief introduction to this 
topic will trigger more research on how the quantum mind is at work in teaching and 
learning.  
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