67 research outputs found

    La implicación de las frutas y hortalizas en las toxiinfecciones alimentarias y la relevancia del estado fisiológico de las bacterias

    Get PDF
    Fruits and vegetables have always been in the news, mainly because of their beneficial properties for human health. However, they increasingly occupy headlines due to their involvement in foodborne outbreaks. This is the reason why, since 2008, many international organizations consider fruit and vegetables risky food. One major microbiological concern regarding the safety of leafy greens is that pathogenic microorganisms are able to adhere to and survive on plant tissue during cultivation and processing, coexist with epiphytic bacteria and persist for long periods of time. The prevalence of pathogenic microorganisms in fruits and vegetables is low (Las frutas y hortalizas han sido siempre noticia debido principalmente a sus propiedades beneficiosas para la salud. Sin embargo, cada vez más ocupan titulares debido a su implicación en toxiinfecciones alimentarias. Por este motivo, desde 2008, las frutas y hortalizas frescas son consideradas por muchos organismos internacionales como un alimento de riesgo. Uno de los principales problemas microbiológicos de las hortalizas de hojas son las bacte­rias entéricas que pueden adherirse rápidamente al tejido durante el cultivo, coexistir con las bacterias epífitas y persistir por largos periodos de tiempo. La prevalencia de microorganismos patógenos en las frutas y hortalizas es baja ( < 1%) y la cuantificación de las bac­terias patógenas o de microorganismos indicadores generalmente muestra niveles muy bajos, lo que no justificaría el elevado número de alertas microbiológicas asociadas a este tipo de productos. Sin embargo, existen dudas sobre si los recuentos obtenidos utilizan­do las técnicas convencionales son capaces de reflejar realmente todos los microorganismos presentes en el producto vegetal, así como en el agua de riego y en el suelo. Varios estudios han demos­trado que cuando las bacterias son sometidas a distintos factores de estrés entran en un estado temporal de baja actividad metabóli­ca en el cual las células pueden persistir durante largos periodos de tiempo sin división celular, llamado estado de latencia o viable pero no cultivable (VBNC). La relevancia que el estado fisiológico de las bacterias puede tener en el desarrollo de toxiinfecciones alimenta­rias causadas por las frutas y hortalizas es un tema de gran interés que está atrayendo más y más la atención de los investigadores

    Identification of Botanical Biomarkers in Argentinean Diplotaxis Honeys: Flavonoids and Glucosinolates

    Get PDF
    To select and establish floral biomarkers of the botanical origin ofDiplotaxis tenuifoliahoneys, the flavonoids and glucosinolates present in bee-deposited nectar collected from hive combs (unripe honey) and mature honey from the same hives fron which the unripe honey samples were collected were analyzed by LC-UV-PAD-ESI-MSn. Glycosidic conjugates of the flavonols quercetin, kaempferol, and isorhamnetin were detected and characterized in unripe honey.D. tenuifoliamature honeys contained the aglycones kaempferol, quercetin, and isorhamnetin. The differences between the phenolic profiles of mature honey and freshly deposited honey could be due to hydrolytic enzymatic activities. Aliphatic and indole glucososinolates were analyzed in unripe and mature honeys, this being the first report of the detection and characterization of glucosinolates as honey constituents. Moreover, these honey samples contained different amounts of propolis-derived flavonoid aglycones (1765−3171 μg/100 g) and hydroxycinnamic acid derivatives (29−1514 μg/100 g). Propolis flavonoids were already present in the freshly deposited nectar, showing that the incorporation of these compounds to honey occurs at the early steps of honey production. The flavonoids quercetin, kaempferol, and isorhamnetin and the glucosinolates detected in the samples could be used as complementary biomarkers for the determination of the floral origin of ArgentineanDiplotaxishoneys

    Surveillance on ESBL-Escherichia coli and Indicator ARG in Wastewater and Reclaimed Water of Four Regions of Spain: Impact of Different Disinfection Treatments

    Get PDF
    [EN] In the present study, the occurrence of indicator antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) both in the influent and the effluent of four Spanish wastewater treatment plants (WWTPs) was monitored for 12 months, and the susceptibility profiles of 89 recovered extended spectrum β-lactamase (ESBL)-producing Escherichia coli isolates were obtained against a wide range of antimicrobials. The aim of the study was to better understand whether the current wastewater treatment practices allow us to obtain safe reclaimed water mitigating the spread of ARB and ARGs to the environment. Results showed high concentrations of ESBL-producing E. coli as well as a high prevalence of a range of ARGs in the influent samples. The reclamation treatments implemented in the WWTPs were effective in reducing both the occurrence of ESBL E. coli and ARGs, although significant differences were observed among WWTPs. Despite these reductions in occurrence observed upon wastewater treatment, our findings suggest that WWTP effluents may represent an important source of ARGs, which could be transferred among environmental bacteria and disseminate antimicrobial resistance through the food chain. Remarkably, no major differences were observed in the susceptibility profiles of the ESBL E. coli isolated from influent and effluent waters, indicating that water treatments do not give rise to the emergence of new resistance phenotypesSIThis research was funded by the Spanish Ministry of Science and Innovation (TED2021- 131427B-C21 and TED2021-131427B-C22

    Antiviral capacity of sanitizers against infectious viruses in process water from the produce industry under batch and continuous conditions

    Get PDF
    The presence of human enteric viruses in produce has extensively been reported. However, the significance of the quality of process water (PW) used by the produce industry and the viral inactivation capacity of water disinfection agents used to maintain the microbiological quality of PW has received limited attention. This study evaluates the antiviral disinfection efficacy of chlorine, chlorine dioxide (ClO2) and peracetic acid (PAA) at recommended operational limits in PW using hepatitis A virus (HAV), the cultivable norovirus surrogate, murine norovirus (MNV-1), and MS2 coliphages. Defined commodity representative crops (baby leaves, bell peppers, and the vegetable mix of tomatoes, cucumbers, peppers, and onions) associated with specific water-based processes were studied. Two systems classified as either batch or continuous system were used. The continuous system allows the continuously entrance of sanitizer solution and organic matter added to the washing tank to simulate the conditions of an industry wash tank. Batch scale experiments showed that 20 mg/L chlorine and 3 mg/L chlorine dioxide completely inactivated MNV-1 and MS2 (mean of 5 log) after 1 min contact time regardless of the PW type. However, the infectivity of HAV was reduced only by less than 2 log after 1 min for chlorine and chlorine dioxide and the complete inactivation was not observed even after 10 min. On the contrary, residual viral infectivity/viability of HAV, MNV-1 and MS2 was observed for PAA in the three types of PW. The inactivation kinetic models for MS2 coliphages were developed based on the data obtained under the continuous system comparing the three types of PW. Chlorine (5 mg/L) and chlorine dioxide (2-3 mg/L) avoided the accumulation of MS2 below the detection limit while PAA (80 mg/L) was unable to prevent it independently of the type of PW. In summary, in the washing operation, it is a key objective to reach virus inactivation through the selection of the most effective sanitizer by guaranteeing that sufficient concentration and contact times prevent the risk of viral cross-contamination

    Spanish wastewater reveals the current spread of Monkeypox virus

    Get PDF
    Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n = 312) from 24 different wastewater treatment plants were obtained between May 9 (week 19 of 2022) and August 4 (week 31 of 2022). Following concentration of viral particles by a validated aluminum adsorption-precipitation method, a qPCR procedure allowed us to detect MPXV DNA in 56 wastewater samples collected from May 16 to August 4, 2022, with values ranging between 2.2 × 103 to 8.7 × 104 genome copies (gc)/L. This study shows that MPXV DNA can be reproducibly detected by qPCR in longitudinal samples collected from different Spanish wastewater treatment plants. According to data from the National Epidemiological Surveillance Network (RENAVE) in Spain a total of 6,119 cases have been confirmed as of August 19, 2022. However, and based on the wastewater data, the reported clinical cases seem to be underestimated and asymptomatic infections may be more frequent than expected.This research was supported by the European Commission NextGenerationEU fund, through CSIC's Global Health Platform (PTI Salud Global), project CEX2021-001189-S MCIN/AEI / 10.13039/501100011033 and Fundación Séneca (Region of Murcia). Samples were obtained from the COVID-19 wastewater surveillance project (VATar COVID-19) funded by the Spanish Ministry for the Ecological Transition and the Demographic Challenge and the Spanish Ministry of Health.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2021-001189-S).Peer reviewe

    Wastewater based epidemiology beyond SARS-CoV-2: Spanish wastewater reveals the current spread of Monkeypox virus

    Get PDF
    Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n=312) from 24 different wastewater treatment plants were obtained between May 9 (week 22_19) and August 4 (week 22_31), 2022. Following concentration of viral particles by flocculation, a qPCR procedure allowed us to detect MPXV DNA in 63 wastewater samples collected from May 16 to August 4, 2022, with values ranging between 2.2 per 103 to 8.7 per 104 genome copies (gc)/L. This study shows that MPXV DNA can be reproducibly detected by qPCR in longitudinal samples collected from different Spanish wastewater treatment plants. According to data from the National Epidemiological Surveillance Network (RENAVE) in Spain a total of 6,119 cases have been confirmed as of August 19, 2022. However, and based on the wastewater data, the reported clinical cases seem to be underestimated and asymptomatic infections may be more frequent than expected.his research was supported by the European Commission NextGenerationEU fund, through CSIC's Global Health Platform (PTI Salud Global) and samples were obtained from the COVID-19 wastewater surveillance project (VATar COVID-19) funded by the Spanish Ministry for the Ecological Transition and the Demographic Challenge and the Spanish Ministry of Health. IGG is recipient of a predoctoral contract from the Generalitat Valenciana (ACIF/2021/181) and AP-C was supported by a postdoctoral fellowship (APOSTD/2021/292). PT is holding a Ramon y Cajal contract from the Ministerio de Ciencia e Innovacion and AC is recipient of a predoctoral contract FI-SDUR from the Generalitat de CatalunyaN

    Monitoring emergence of SARS-CoV-2 B.1.1.7 Variant through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19) from December 2020 to March 2021

    Get PDF
    Background Since its first identification in the United Kingdom in late 2020, the highly transmissible B.1.1.7 variant of SARS-CoV-2, become dominant in several European countries raising great concern. Aim The aim of this study was to develop a duplex real-time RT-qPCR assay to detect, discriminate and quantitate SARS-CoV-2 variants containing one of its mutation signatures, the ΔHV69/70 deletion, to trace the community circulation of the B.1.1.7 variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). Results B.1.1.7 variant was first detected in sewage from the Southern city of Málaga (Andalucía) in week 20_52, and multiple introductions during Christmas holidays were inferred in different parts of the country, earlier than clinical epidemiological reporting by the local authorities. Wastewater-based B.1.1.7 tracking showed a good correlation with clinical data and provided information at the local level. Data from WWTPs which reached B.1.1.7 prevalences higher than 90% for ≥ 2 consecutive weeks showed that 8.1±1.8 weeks were required for B.1.1.7 to become dominant. Conclusion The study highlights the applicability of RT-qPCR-based strategies to track specific mutations of variants of concern (VOCs) as soon as they are identified by clinical sequencing, and its integration into existing wastewater surveillance programs, as a cost-effective approach to complement clinical testing during the COVID-19 pandemic.This work was partially supported by the COVID-19 wastewater surveillance project (VATar COVID19), funded by the Spanish Ministry for the Ecological Transition and the Demographic Challenge of and the Spanish Ministry of Health; grants from CSIC (202070E101) and MICINN co-founded by AEI FEDER, UE (AGL2017-82909); grant ED431C 2018/18 from the Conselleria de Educacion, Universidade e Formacion Profesional, Xunta de Galicia (Spain); Direccio General de Recerca i Innovacio en Salut (DGRIS) Catalan Health Ministry Generalitat de Catalunya through Vall de Hebron Research Institute (VHIR), and Centro para el Desarrollo Tecnologico Industrial (CDTI) from the Spanish Ministry of Economy and Business, grant number IDI-20200297. Pilar Truchado is holding a Ramon y Cajal contract from the Ministerio de Ciencia e Innovacion. Adan Martinez is holding a predoctoral fellowship FI_SDUR from Generalitat de Catalunya. We gratefully acknowledge all the staff involved in the VATar COVID-19 project, working with sample collection and logistics. The authors are grateful to Promega Corporation (Madison, US) for technical advice, and thank Andrea Lopez de Mota for her technical support.N

    Monitoring Emergence of the SARS-CoV-2 B.1.1.7 Variant through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19)

    Get PDF
    Since its first identification in the United Kingdom in late 2020, the highly transmissible B.1.1.7 variant of SARS-CoV-2 has become dominant in several countries raising great concern. We developed a duplex real-time RT-qPCR assay to detect, discriminate, and quantitate SARS-CoV-2 variants containing one of its mutation signatures, the ΔHV69/70 deletion, and used it to trace the community circulation of the B.1.1.7 variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). The B.1.1.7 variant was detected earlier than clinical epidemiological reporting by the local authorities, first in the southern city of Málaga (Andalucía) in week 20_52 (year_week), and multiple introductions during Christmas holidays were inferred in different parts of the country. Wastewater-based B.1.1.7 tracking showed a good correlation with clinical data and provided information at the local level. Data from wastewater treatment plants, which reached B.1.1.7 prevalences higher than 90% for ≥2 consecutive weeks showed that 8.1 ± 2.0 weeks were required for B.1.1.7 to become dominant. The study highlights the applicability of RT-qPCR-based strategies to track specific mutations of variants of concern as soon as they are identified by clinical sequencing and their integration into existing wastewater surveillance programs, as a cost-effective approach to complement clinical testing during the COVID-19 pandemic.This work was partially supported by the COVID-19 wastewater surveillance project (VATar COVID19), funded by the Spanish Ministry for the Ecological Transition and the Demographic Challenge and the Spanish Ministry of Health, grants from CSIC (202070E101) and MICINN cofounded by AEI FEDER, UE (AGL2017-82909), grant ED431C 2018/18 from the Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia (Spain), Direcció General de Recerca i Innovació en Salut (DGRIS) Catalan Health Ministry Generalitat de Catalunya through Vall d’Hebron Research Institute (VHIR), and Centro para el Desarrollo Tecnológico Industrial (CDTI) from the Spanish Ministry of Economy and Business, grant number IDI-20200297. P.T. is holding a Ramón y Cajal contract from the Ministerio de Ciencia e Innovación. A.M. is holding a predoctoral fellowship FI_SDUR from Generalitat de Catalunya. We gratefully acknowledge all the staff involved in the VATar COVID-19 project, working with sample collection and logistics. The authors are grateful to Promega Corporation (Madison, US) for technical advice and thank Andrea Lopez de Mota for her technical support.Peer reviewe
    corecore