361 research outputs found
Influence of Grain Size on the Band-gap of Annealed SnS Thin Films
The manuscript reports the variation in optical band-gap of vacuum annealed
SnS thin films. The samples were characterized by using X-Ray Diffraction,
UV-visible Spectroscopy and Raman Analysis. Results show that while annealing
does not effect the nano-crystalline sample's lattice structure or unit cell
size it does control the grain size. The band-gap (Eg) decreases with increase
in grain size. Eg values were found to be very high (1.8-2.5 eV) for samples
studied
Quasiparticle interfacial level alignment of highly hybridized frontier levels: HO on TiO(110)
Knowledge of the frontier levels' alignment prior to photo-irradiation is
necessary to achieve a complete quantitative description of HO
photocatalysis on TiO(110). Although HO on rutile TiO(110) has been
thoroughly studied both experimentally and theoretically, a quantitative value
for the energy of the highest HO occupied levels is still lacking. For
experiment, this is due to the HO levels being obscured by hybridization
with TiO(110) levels in the difference spectra obtained via ultraviolet
photoemission spectroscopy (UPS). For theory, this is due to inherent
difficulties in properly describing many-body effects at the
HO-TiO(110) interface. Using the projected density of states (DOS) from
state-of-the-art quasiparticle (QP) , we disentangle the adsorbate and
surface contributions to the complex UPS spectra of HO on TiO(110). We
perform this separation as a function of HO coverage and dissociation on
stoichiometric and reduced surfaces. Due to hybridization with the TiO(110)
surface, the HO 3a and 1b levels are broadened into several peaks
between 5 and 1 eV below the TiO(110) valence band maximum (VBM). These
peaks have both intermolecular and interfacial bonding and antibonding
character. We find the highest occupied levels of HO adsorbed intact and
dissociated on stoichiometric TiO(110) are 1.1 and 0.9 eV below the VBM. We
also find a similar energy of 1.1 eV for the highest occupied levels of HO
when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In
both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than
those estimated from UPS difference spectra, which are inconclusive in this
energy region. Finally, we apply self-consistent QP (scQP1) to obtain
the ionization potential of the HO-TiO(110) interface.Comment: 12 pages, 12 figures, 1 tabl
Cotransporter-mediated water transport underlying cerebrospinal fluid formation
AbstractCerebrospinal fluid (CSF) production occurs at a rate of 500 ml per day in the adult human. Conventional osmotic forces do not suffice to support such production rate and the molecular mechanisms underlying this fluid production remain elusive. Using ex vivo choroid plexus live imaging and isotope flux in combination with in vivo CSF production determination in mice, we identify a key component in the CSF production machinery. The Na+/K+/2Cl− cotransporter (NKCC1) expressed in the luminal membrane of choroid plexus contributes approximately half of the CSF production, via its unusual outward transport direction and its unique ability to directly couple water transport to ion translocation. We thereby establish the concept of cotransport of water as a missing link in the search for molecular pathways sustaining CSF production and redefine the current model of this pivotal physiological process. Our results provide a rational pharmacological target for pathologies involving disturbed brain fluid dynamics.</jats:p
- …
