2,637 research outputs found

    A novel estimator of the polarization amplitude from normally distributed Stokes parameters

    Full text link
    We propose a novel estimator of the polarization amplitude from a single measurement of its normally distributed (Q,U)(Q,U) Stokes components. Based on the properties of the Rice distribution and dubbed 'MAS' (Modified ASymptotic), it meets several desirable criteria:(i) its values lie in the whole positive region; (ii) its distribution is continuous; (iii) it transforms smoothly with the signal-to-noise ratio (SNR) from a Rayleigh-like shape to a Gaussian one; (iv) it is unbiased and reaches its components' variance as soon as the SNR exceeds 2; (v) it is analytic and can therefore be used on large data-sets. We also revisit the construction of its associated confidence intervals and show how the Feldman-Cousins prescription efficiently solves the issue of classical intervals lying entirely in the unphysical negative domain. Such intervals can be used to identify statistically significant polarized regions and conversely build masks for polarization data. We then consider the case of a general [Q,U][Q,U] covariance matrix and perform a generalization of the estimator that preserves its asymptotic properties. We show that its bias does not depend on the true polarization angle, and provide an analytic estimate of its variance. The estimator value, together with its variance, provide a powerful point-estimate of the true polarization amplitude that follows an unbiased Gaussian distribution for a SNR as low as 2. These results can be applied to the much more general case of transforming any normally distributed random variable from Cartesian to polar coordinates.Comment: Accepted by MNRA

    Future challenges and recommendations

    Get PDF
    Rapid advances in information technology and telecommunications, and in particular mobile and wireless communications, converge towards the emergence of a new type of “infostructure” that has the potential of supporting a large spectrum of advanced services for healthcare and health. Currently the ICT community produces a great effort to drill down from the vision and the promises of wireless and mobile technologies and provide practical application solutions. Research and development include data gathering and omni-directional transfer of vital information, integration of human machine interface technology into handheld devices and personal applications, security and interoperability of date and integration with hospital legacy systems and electronic patient record. The ongoing evolution of wireless technology and mobile device capabilities is changing the way healthcare providers interact with information technologies. The growth and acceptance of mobile information technology at the point of care, coupled with the promise and convenience of data on demand, creates opportunities for enhanced patient care and safety. The developments presented in this section demonstrate clearly the innovation aspects and trends towards user oriented applications

    MIMAC : Detection of low energy recoils for Dark Matter search

    Full text link
    The MIMAC project is based on a matrix of Micro Time Projection Chambers (micro-TPC) for Dark Matter search, filled with He3 or CF4 and using ionization and tracks. The first measurement of the energy resolution of this micro-TPC is presented as well as its low thresholdComment: Dark Energy and Dark Matter conference, Lyon : France (2008

    Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability

    Get PDF
    In steep soil-mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these properties vary in space and time in forests remains a significant challenge. Here we test the hypothesis that spatio-temporal variations in root reinforcement along a hillslope occur as a function of topographic soil moisture gradients. To test this hypothesis we compared root reinforcement measurements from relatively dry, divergent noses to relatively wet, convergent hollows in the southern Appalachian Mountains, North Carolina, USA. Our initial results showed that root reinforcement decreased in areas of higher soil moisture because the tensile strength of roots decreased. A post-hoc laboratory experiment further demonstrated that root tensile strength decreased as root moisture content increased. This effect is consistent with other experiments on stem woods showing that increased water content in the cell wall decreases tensile strength. Our experimental data demonstrated that roots can adjust to changes in the external root moisture conditions within hours, suggesting that root moisture content will change over the timescale of large storm events (hours-days). We assessed the effects of the dynamic changes in root tensile strength to the magnitude of apparent cohesion within the infinite slope stability model. Slopes can be considerably less stable when precipitation-driven increases in saturated soil depth both increase pore pressures and decrease root reinforcement. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved

    Relieving tensions related to the lensing of CMB temperature power spectra

    Full text link
    The angular power spectra of the cosmic microwave background (CMB) temperature anisotropies reconstructed from Planck data seem to present too much gravitational lensing distortion. This is quantified by the control parameter ALA_L that should be compatible with unity for a standard cosmology. With the Class Boltzmann solver and the profile-likelihood method, for this parameter we measure a 2.6σ\sigma shift from 1 using the Planck public likelihoods. We show that, owing to strong correlations with the reionization optical depth τ\tau and the primordial perturbation amplitude AsA_s, a 2σ\sim2\sigma tension on τ\tau also appears between the results obtained with the low (30\ell\leq 30) and high (30<250030<\ell\lesssim 2500) multipoles likelihoods. With Hillipop, another high-\ell likelihood built from Planck data, this difference is lowered to 1.3σ1.3\sigma. In this case, the ALA_L value is still in disagreement with unity by 2.2σ2.2\sigma, suggesting a non-trivial effect of the correlations between cosmological and nuisance parameters. To better constrain the nuisance foregrounds parameters, we include the very high \ell measurements of the Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) experiments and obtain AL=1.03±0.08A_L = 1.03 \pm 0.08. The Hillipop+ACT+SPT likelihood estimate of the optical depth is τ=0.052±0.035,\tau=0.052\pm{0.035,} which is now fully compatible with the low \ell likelihood determination. After showing the robustness of our results with various combinations, we investigate the reasons for this improvement that results from a better determination of the whole set of foregrounds parameters. We finally provide estimates of the Λ\LambdaCDM parameters with our combined CMB data likelihood.Comment: accepted by A&

    Modeling loop backbone flexibility in receptor-ligand docking simulations

    Get PDF

    NGC 1068: No change in the mid-IR torus structure despite X-ray variability

    Get PDF
    Context. Recent NuSTAR observations revealed a somewhat unexpected increase in the X-ray flux of the nucleus of NGC 1068. We expect the infrared emission of the dusty torus to react on the intrinsic changes of the accretion disk. Aims. We aim to investigate the origin of the X-ray variation by investigating the response of the mid-infrared environment. Methods. We obtained single-aperture and interferometric mid-infrared measurements and directly compared the measurements observed before and immediately after the X-ray variations. The average correlated and single-aperture fluxes as well as the differential phases were directly compared to detect a possible change in the structure of the nuclear emission on scales of \sim 2 pc. Results. The flux densities and differential phases of the observations before and during the X-ray variation show no significant change over a period of ten years. Possible minor variations in the infrared emission are \lesssim 8 %. Conclusions. Our results suggest that the mid-infrared environment of NGC 1068 has remained unchanged for a decade. The recent transient change in the X-rays did not cause a significant variation in the infrared emission. This independent study supports previous conclusions that stated that the X-ray variation detected by NuSTAR observations is due to X-ray emission piercing through a patchy section of the dusty region.Comment: 6 pages, 5 figures, 3 tables. Accepted for publication on A&

    Polarization measurements analysis II. Best estimators of polarization fraction and angle

    Full text link
    With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, it becomes critical to evaluate the performance of estimators for the polarization fraction and angle. These two physical quantities suffer from a well-known bias in the presence of measurement noise, as has been described in part I of this series. In this paper, part II of the series, we explore the extent to which various estimators may correct the bias. Traditional frequentist estimators of the polarization fraction are compared with two recent estimators: one inspired by a Bayesian analysis and a second following an asymptotic method. We investigate the sensitivity of these estimators to the asymmetry of the covariance matrix which may vary over large datasets. We present for the first time a comparison among polarization angle estimators, and evaluate the statistical bias on the angle that appears when the covariance matrix exhibits effective ellipticity. We also address the question of the accuracy of the polarization fraction and angle uncertainty estimators. The methods linked to the credible intervals and to the variance estimates are tested against the robust confidence interval method. From this pool of estimators, we build recipes adapted to different use-cases: build a mask, compute large maps, and deal with low S/N data. More generally, we show that the traditional estimators suffer from discontinuous distributions at low S/N, while the asymptotic and Bayesian methods do not. Attention is given to the shape of the output distribution of the estimators, and is compared with a Gaussian. In this regard, the new asymptotic method presents the best performance, while the Bayesian output distribution is shown to be strongly asymmetric with a sharp cut at low S/N.Finally, we present an optimization of the estimator derived from the Bayesian analysis using adapted priors

    Mapping the radial structure of AGN tori

    Full text link
    We present mid-IR interferometric observations of 6 type 1 AGNs at multiple baseline lengths of 27--130m, reaching high angular resolutions up to lambda/B~0.02 arcseconds. For two of the targets, we have simultaneous near-IR interferometric measurements as well. The multiple baseline data directly probe the radial distribution of the material on sub-pc scales. Within our sample, which is small but spans over ~2.5 orders of magnitudes in the UV/optical luminosity L of the central engine, the radial distribution clearly and systematically changes with luminosity. First, we show that the brightness distribution at a given mid-IR wavelength seems to be rather well described by a power law, which makes a simple Gaussian or ring size estimation quite inadequate. Here we instead use a half-light radius R_1/2 as a representative size. We then find that the higher luminosity objects become more compact in normalized half-light radii R_1/2 /R_in in the mid-IR, where R_in is the dust sublimation radius empirically given by the L^1/2 fit of the near-IR reverberation radii. This means that, contrary to previous studies, the physical mid-IR emission size (e.g. in pc) is not proportional to L^1/2, but increases with L much more slowly, or in fact, nearly constant at 13 micron. Combining the size information with the total flux specta, we infer that the radial surface density distribution of the heated dust grains changes from a steep ~r^-1 structure in high luminosity objects to a shallower ~r^0 structure in those of lower luminosity. The inward dust temperature distribution does not seem to smoothly reach the sublimation temperature -- on the innermost scale of ~R_in, a relatively low temperature core seems to co-exist with a slightly distinct brightness concentration emitting roughly at the sublimation temperature.Comment: accepted for publication in A&
    corecore