research

Relieving tensions related to the lensing of CMB temperature power spectra

Abstract

The angular power spectra of the cosmic microwave background (CMB) temperature anisotropies reconstructed from Planck data seem to present too much gravitational lensing distortion. This is quantified by the control parameter ALA_L that should be compatible with unity for a standard cosmology. With the Class Boltzmann solver and the profile-likelihood method, for this parameter we measure a 2.6σ\sigma shift from 1 using the Planck public likelihoods. We show that, owing to strong correlations with the reionization optical depth τ\tau and the primordial perturbation amplitude AsA_s, a 2σ\sim2\sigma tension on τ\tau also appears between the results obtained with the low (30\ell\leq 30) and high (30<250030<\ell\lesssim 2500) multipoles likelihoods. With Hillipop, another high-\ell likelihood built from Planck data, this difference is lowered to 1.3σ1.3\sigma. In this case, the ALA_L value is still in disagreement with unity by 2.2σ2.2\sigma, suggesting a non-trivial effect of the correlations between cosmological and nuisance parameters. To better constrain the nuisance foregrounds parameters, we include the very high \ell measurements of the Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) experiments and obtain AL=1.03±0.08A_L = 1.03 \pm 0.08. The Hillipop+ACT+SPT likelihood estimate of the optical depth is τ=0.052±0.035,\tau=0.052\pm{0.035,} which is now fully compatible with the low \ell likelihood determination. After showing the robustness of our results with various combinations, we investigate the reasons for this improvement that results from a better determination of the whole set of foregrounds parameters. We finally provide estimates of the Λ\LambdaCDM parameters with our combined CMB data likelihood.Comment: accepted by A&

    Similar works