165 research outputs found

    Gene therapy for articular cartilage repair

    Get PDF
    Articular cartilage serves as the gliding surface of joints. It is susceptible to damage from trauma and from degenerative diseases. Restoration of damaged articular cartilage may be achievable through the use of cell-regulatory molecules that augment the reparative activities of the cells, inhibit the cells\u27; degradative activities, or both. A variety of such molecules have been identified. These include insulin-like growth factor I, fibroblast growth factor 2, bone morphogenetic proteins 2, 4, and 7, and interleukin-1 receptor antagonist. It is now possible to transfer the genes encoding such molecules into articular cartilage and synovial lining cells. Although preliminary, data from in-vitro and in-vivo studies suggest that gene therapy can deliver such potentially therapeutic agents to protect existing cartilage and to build new cartilage. Keywords: gene therapy, vectors, articular cartilage, arthritis, animal model

    Setting the photoelectron clock through molecular alignment

    Get PDF
    The interaction of strong laser fields with matter intrinsically provides a powerful tool for imaging transient dynamics with an extremely high spatiotemporal resolution. Here, we study strong-field ionisation of laser-aligned molecules, and show a full real-time picture of the photoelectron dynamics in the combined action of the laser field and the molecular interaction. We demonstrate that the molecule has a dramatic impact on the overall strong-field dynamics: it sets the clock for the emission of electrons with a given rescattering kinetic energy. This result represents a benchmark for the seminal statements of molecular-frame strong-field physics and has strong impact on the interpretation of self-diffraction experiments. Furthermore, the resulting encoding of the time-energy relation in molecular-frame photoelectron momentum distributions shows the way of probing the molecular potential in real-time, and accessing a deeper understanding of electron transport during strong-field interactions

    Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    Get PDF
    Citation: Boll, R., Erk, B., Coffee, R., Trippel, S., Kierspel, T., Bomme, C., . . . Rudenko, A. (2016). Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses. Structural Dynamics, 3(4). doi:10.1063/1.4944344Additional Authors: Marchenko, T.;Miron, C.;Patanen, M.;Osipov, T.;Schorb, S.;Simon, M.;Swiggers, M.;Techert, S.;Ueda, K.;Bostedt, C.;Rolles, D.;Rudenko, A.Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. © 2016 Author(s)

    Coulomb explosion imaging of small organic molecules at LCLS.

    No full text
    Fragmentation of small organic molecules by intense few-femtosecond X-ray free-electron laser pulses has been studied using Coulomb explosion imaging. By measuring kinetic energies and emission angles of the ionic fragments in coincidence, we disentangle different fragmentation pathways, for certain cases can reconstruct molecular geometry at the moment of explosion, and show how it depends on LCLS pulse duration

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    towards time-resolved imaging of molecular structure

    Get PDF
    We demonstrate an experimental method to record snapshot diffraction images of polyatomic gas-phase molecules, which can, in a next step, be used to probe time-dependent changes in the molecular geometry during photochemical reactions with femtosecond temporal and angstrom spatial resolution. Adiabatically laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) molecules were imaged by diffraction of photoelectrons with kinetic energies between 31 and 62 eV, created from core ionization of the fluorine (1s) level by ≈80 fs x-ray free-electron-laser pulses. Comparison of the experimental photoelectron angular distributions with density functional theory calculations allows relating the diffraction images to the molecular structure

    Lipid metabolite biomarkers in cardiovascular disease: discovery and biomechanism translation from human studies

    Get PDF
    Lipids represent a valuable target for metabolomic studies since altered lipid metabolism is known to drive the pathological changes in cardiovascular disease (CVD). Metabolomic technologies give us the ability to measure thousands of metabolites providing us with a metabolic fingerprint of individual patients. Metabolomic studies in humans have supported previous findings into the pathomechanisms of CVD, namely atherosclerosis, apoptosis, inflammation, oxidative stress, and insulin resistance. The most widely studied classes of lipid metabolite biomarkers in CVD are phospholipids, sphingolipids/ceramides, glycolipids, cholesterol esters, fatty acids, and acylcarnitines. Technological advancements have enabled novel strategies to discover individual biomarkers or panels that may aid in the diagnosis and prognosis of CVD, with sphingolipids/ceramides as the most promising class of biomarkers thus far. In this review, application of metabolomic profiling for biomarker discovery to aid in the diagnosis and prognosis of CVD as well as metabolic abnormalities in CVD will be discussed with particular emphasis on lipid metabolites

    First demonstration of 3D optical readout of a TPC using a single photon sensitive Timepix3 based camera

    Get PDF
    The ARIADNE project is developing innovative optical readout technologies for two-phase liquid Argon time projection chambers (LArTPCs). Optical readout presents an exciting alternative to the current paradigm of charge readout. Optical readout is simple, scalable and cost effective. This paper presents first demonstration of 3D optical readout of TPC, using CF4 gas as a proof of principle. Both cosmic rays and an Americium-241 alpha source have been imaged in 100 mbar CF4. A single-photon sensitive camera was developed by combining a Timepix3 (TPX3) based camera with an image intensifier. When a pixel of TPX3 is hit, a packet containing all information about the hit is produced. This packet contains the x,y coordinates of the pixel, time of arrival (ToA) and time over threshold (ToT) information. The z position of the hit in the TPC is determined by combining drift velocity with ToA information. 3D event reconstruction is performed by combining the pixels x,y location with this calculated z position. Calorimetry is performed using time over threshold, a measure of the intensity of the hit

    Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    Get PDF
    Citation: Savelyev, E., Boll, R., Bomme, C., Schirmel, N., Redlin, H., Erk, B., . . . Rolles, D. (2017). Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser. New Journal of Physics, 19, 13. doi:10.1088/1367-2630/aa652dIn pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene (C6H3F2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Wediscuss in detail the necessary data analysis steps and describe the origin of the timedependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment

    The Deuteron Spin-dependent Structure Function g1d and its First Moment

    Get PDF
    We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.Comment: fits redone using MRST2004 instead of MRSV1998 for G(x), correlation matrix adde
    corecore