24 research outputs found

    Strong nucleosomes of mouse genome including recovered centromeric sequences

    Get PDF
    Recently discovered strong nucleosomes (SNs) characterized by visibly periodical DNA sequences have been found to concentrate in centromeres of Arabidopsis thaliana and in transient meiotic centromeres of Caenorhabditis elegans. To find out whether such affiliation of SNs to centromeres is a more general phenomenon, we studied SNs of the Mus musculus. The publicly available genome sequences of mouse, as well as of practically all other eukaryotes do not include the centromere regions which are difficult to assemble because of a large amount of repeat sequences in the centromeres and pericentromeric regions. We recovered those missing sequences using the data from MNase-seq experiments in mouse embryonic stem cells, where the sequence of DNA inside nucleosomes, including missing regions, was determined by 100-bp paired-end sequencing. Those nucleosome sequences, which are not matching to the published genome sequence, would largely belong to the centromeres. By evaluating SN densities in centromeres and in non-centromeric regions, we conclude that mouse SNs concentrate in the centromeres of telocentric mouse chromosomes, with ~3.9 times excess compared to their density in the rest of the genome. The remaining non-centromeric SNs are harbored mainly by introns and intergenic regions, by retro-transposons, in particular. The centromeric involvement of the SNs opens new horizons for the chromosome and centromere structure studies

    Soil pH and biome are both key determinants of soil archaeal community structure

    Get PDF
    The mechanisms underlying community composition and diversity of soil archaea are poorly understood. We compared both total archaea and ammonia oxidizing archaea (AOA) using 16S rRNA and amoA genes pyrosequencing respectively, in two different biomes: tropics (Malaysia), and temperate (Korea and Japan). Despite differences in characteristics of these biomes, we found that at the broad taxonomic level the dominant archaeal lineages are the same, except in certain instances (16S rRNA gene: group 1.1a Thaumarchaeota; amoA gene: Nitrososphaera and Nitrosotalea lineages). However, at the OTU level, both total archaea and AOA communities showed biome-specific patterns, indicating that at lower taxonomic levels biome differences are also important. In both biomes, total archaeal diversity showed a negative correlation with pH, but a hump-shaped curve for AOA diversity, peaking at ∼pH 6.0. Within each biome, pH also emerged as the delimiting factor determining variation in community composition of both total archaea and AOA. Communities from each biome clustered separately, even at analogous pH levels. At the OTU level, certain shared OTUs did occur at approximately the same pH range in both biomes. We found that closely related OTUs of both total archaea and AOA respectively tended to co-occur, suggesting that in evolutionary terms these closely related lineages have conserved very similar ecological requirements. This predictability also strongly suggests that soil archaeal community assembly has strongly deterministic aspect. Overall, our findings emphasize that soil archaeal communities are to large extent predictable and structured by both biome and by soil chemical environment, especially pH

    Acephate

    No full text

    An air-stable Ni(III) complex with thiolate, phenolate and amide ligation

    No full text
    An air-stable Ni(III) complex with the donor set, N2O2S2 (L1) has been isolated in the solid state. The complex has been characterized by elemental analysis, electronic and EPR spectroscopy and electrochemical studies

    Not Available

    No full text
    Not AvailableSalicylic acid (SA) and nitric oxide (NO) are considered as putative plant growth regulators that are involved in the regulation of an array of plant’s growth and developmental functions under environmental fluctuations when applied at lower concentrations. The possible involvement of NO in SA induced attenuation of high temperature (HT) induced oxidative stress in plants is however, still vague and need to be explored. Therefore, the present study aimed to investigates the biochemical and physiological changes induced by foliar spray of SA and NO combinations to ameliorate HT induced oxidative stress in Lablab purpureus L. Foliar application of combined SA and NO significantly improved relative water content (27.8 %), photosynthetic pigment content (67.2 %), membrane stability (45 %), proline content (1.0 %), expression of enzymatic antioxidants (7.1–18 %) along with pod yield (1.0 %). Heat Shock Factors (HSFs) play crucial roles in plants abiotic stress tolerance, however there structural and functional classifications in L. purpureus L. is still unknown. So, In-silico approach was also used for functional characterization and homology modelling of HSFs in L. purpureus. The experimental findings depicted that combine effect of SA and NO enhances tolerance in HT stressed L. purpureus L. plants by regulating physiological functions, antioxidants, expression and regulation of stress-responsive genes via transcriptional regulation of heat shock factor.Not Availabl

    Structural, functional and unfolding characteristics of glutathione S-transferase of Plasmodium vivax

    No full text
    Glutathione S-transferases (GSTs) of Plasmodium parasites are potential targets for antimalarial drug and vaccine development. We investigated the equilibrium unfolding, functional activity regulation and stability characteristics of the unique GST of Plasmodium vivax (PvGST). Despite high sequence, structural, functional, and evolutionary similarity, the unfolding behavior of PvGST was significantly different from Plasmodium falciparum GST (PfGST). The unfolding pathway of PvGST was non-cooperative with stabilization of an inactive dimeric intermediate. The absence of any compact, folded monomeric intermediate during the unfolding transition suggests that inter-subunit interactions play an important role in stabilizing the protein. Presence of salts effectively inhibited PvGST enzymatic activity by quenching the nucleophilicity of the thiolate anion of GSH. Based on the present findings, together with our previous studies on PfGST, we propose that the regulation of GST enzymatic activity through a dimer-tetramer transition via GSH binding is an exclusive feature of Plasmodium

    Uranium oxide nanoparticles dispersed inside the mesopores of MCM-48: synthesis and characterization

    No full text
    The nanocrystallites of uranium oxide were dispersed in the mesopores of siliceous MCM-48 by subjecting it to the repeated cycles of incipient wet impregnation followed each time by drying and calcination steps. A loading of up to ~20 wt% of U could be achieved in this manner. The physico-chemical characteristics of the samples were examined using XRD, XPS, IR, DR UV-VIS spectroscopy, Nitrogen sorption and HRTEM techniques. In spite of progressive disordering in the host structure and accompanying decrease in the unit cell parameter after each cycle of impregnation/calcination, the mesoporosity of the host was always preserved to certain extent. Also, the BET area, pore size and pore volume measurements indicated the gradual filling of the pores of MCM-48 as a result of uranium loading. The spectroscopy results revealed that the uranium species were initially bonded to · Si-OH sites of the host matrix in the form of UO22+ groups which in turn converted to U3O8 upon calcination. TEM examination confirmed that the majority (~85%) of U3O8 particles were of less than 3 nm size and these were located exclusively within the pore system of host matrix. On the other hand, larger size crystallites were dispersed at the external surfaces. Furthermore, the size of the U3O8 particles and the physical characteristics of the U/MCM samples depended considerably on synthesis conditions, the post-impregnation ambient temperature drying under vacuum facilitating the formation of smaller size and more uniformly distributed particles

    Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor)

    No full text
    Duckweed is potentially an ideal biofuel feedstock due to its high proportion of cellulose and starch and low lignin content. However, there is little detailed information on the composition and structure of duckweed cell walls relevant to optimising the conversion of duckweed biomass to ethanol and other biorefinery products. This study reports that, for the variety and batch evaluated, carbohydrates constitute 51.2% (w/w) of dry matter while starch accounts for 19.9%. This study, for the first time, analyses duckweed cell wall composition through a detailed sequential extraction. The cell wall is rich in cellulose and also contains 20.3% pectin comprising galacturonan, xylogalacturonan, rhamnogalacturonan; 3.5% hemicellulose comprising xyloglucan and xylan, and 0.03% phenolics. In addition, essential fatty acids (0.6%, α-linolenic and linoleic/linoelaidic acid) and p-coumaric acid (0.015%) respectively are the most abundant fatty acids and phenolics in whole duckweed
    corecore