27 research outputs found
ALTERATION OF BIOCHEMICAL PARAMETERS IN THE BREEDING CYCLE OF MYSTUS VITTATUS (BLOCH.) EXPOSED TO MUNICIPAL SEWAGE AT BASTI CITY (U.P.)
Biochemical disorder in fishes are intimately associated with inclusive physiological hindrance. Many types of biochemical faults and deformity in the metabolism of carbohydrates, Proteins, fats and Nucleic acids are finding in different tissue of environmentally tressed fishes. The responsibility of gonadial tissue i.e. testes and ovary are upgrade many times during the breeding phase of the reproductive cycle of teleost fishes. Any biochemical deformity in their tissues would adversely affect the reproductive activity of fish population. Fresh water pollution mainly of the Kuwano river is caused by runoff from house drains, street disposal, sewage and effluents from small and large scale of industries situated nearby the river. On spot observations indicate that heavy fish mortality has been occurring in the areas in the river Kuwano contaminated by municipal sewage. The examined biochemical parameters were glycogen, amino acids, and cholesterol. The acute toxicity and bioassays of sewage exposed to test fish Mystus vittatus has been conducted for its three breeding phases i.e. pre-spawning, spawning and post-spawning
Structural Evolution of Tungsten Surface Exposed to Sequential Low-Energy Helium Ion Irradiation and Transient Heat Loading
Structural damage due to high flux particle irradiation can result in significant changes to the thermal strength of the plasma facing component surface (PFC) during off-normal events in a tokamak. Low-energy He+ ion irradiation of tungsten (W), which is currently the leading candidate material for future PFCs, can result in the development of a fiber form nanostructure, known as “fuzz”. In the current study, mirror-finished W foils were exposed to 100 eV He+ ion irradiation at a fluence of 2.6 × 1024 ions m−2 and a temperature of 1200 K. Then, samples were exposed to two different types of pulsed heat loading meant to replicate type-I edge-localized mode (ELM) heating at varying energy densities and base temperatures. Millisecond (ms) laser exposure done at 1200 K revealed a reduction in fuzz density with increasing energy density due to the conglomeration and local melting of W fibers. At higher energy densities (∼ 1.5 MJ m−2), RT exposures resulted in surface cracking, while 1200 K exposures resulted in surface roughening, demonstrating the role of base temperature on the crack formation in W. Electron beam heating presented similar trends in surface morphology evolution; a higher penetration depth led to reduced melt motion and plasticity. In situ mass loss measurements obtained via a quartz crystal microbalance (QCM) found an exponential increase in particle emission for RT exposures, while the prevalence of melting from 1200 K exposures yielded no observable trend
Rejuvenating bone marrow hematopoietic reserve prevents regeneration failure and hepatic decompensation in animal model of cirrhosis
Background and aimBone marrow stem cells (BM-SCs) and their progeny play a central role in tissue repair and regeneration. In patients with chronic liver failure, bone marrow (BM) reserve is severally compromised and they showed marked defects in the resolution of injury and infection, leading to liver failure and the onset of decompensation. Whether BM failure is the cause or consequence of liver failure during cirrhosis is not known. In this study, we aimed to determine the underlying relationship between BM failure and regeneration failure in cirrhosis.MethodologyC57Bl/6(J) mice were used to develop chronic liver injury through intra-peritoneal administration of carbon tetrachloride (CCl4) for 15 weeks (0.1-0.5 ml/kg). Animals were sacrificed to study the transition of cirrhosis and BM defects. To restore the BM-SC reserve; healthy BM cells were infused via intra-BM infusion and assessed for changes in liver injury, regeneration, and BM-SC reserve.ResultsUsing a CCl4-induced animal - model of cirrhosis, we showed the loss of BM-SCs reserve occurred before regeneration failure and the onset of non-acute decompensation. Intra-BM infusion of healthy BM cells induced the repopulation of native hematopoietic stem cells (HSCs) in cirrhotic BM. Restoring BM-HSCs reserve augments liver macrophage-mediated clearance of infection and inflammation dampens neutrophil-mediated inflammation, accelerates fibrosis regression, enhances hepatocyte proliferation, and delays the onset of non-acute decompensation.ConclusionThese findings suggest that loss of BM-HSCs reserve underlies the compromised innate immune function of the liver, drives regeneration failure, and the onset of non-acute decompensation. We further provide the proof-of-concept that rejuvenating BM-HSC reserve can serve as a potential therapeutic approach for preventing regeneration failure and transition to decompensated cirrhosis
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
A nomadic multi-agent based privacy metrics for e-health care : a deep learning approach
In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes. [Abstract copyright: © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Effect of water stress on antioxidative enzymes and glycine betaine content in drought tolerant and drought susceptible cotton (<em>Gossypium hirsutum</em> L.) genotypes
198-204Drought stress is one of the foremost abiotic stress, which causes a reduction in plant growth and yield. Therefore, present study was aimed to analyzed the activity of four antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), esterase (EST), and osmolyte glycine betaine (GB) in leaf and root tissues of two cotton genotypes namely, G.cot-16 (drought tolerant) and GBHV-177 (drought susceptible) subjected to drought stresses by withholding of irrigation.A differential response was observed for antioxidant enzymes and GB network in cotton genotypes. GB content was significantly higher in leaf tissues as well as root tissues of G.cot-16 than GBHV-177. The activity of SOD significantly boosted in leaf and root tissues of both the genotype up to 20 days after stress (DAS) however, further it declined in the GBHV-177 with increasing severity of water deficit stress. Activities of GR and EST significantly enhanced in leaf and root tissues of G.cot-16 while drastically declined in the leaf and root tissues of GBHV-177 till 40 DAS under water stress condition. Moreover, POD activity was significantly increased in the leaf and root tissues of G.cot-16 up to 30 DAS then it was declined to 40 DAS, however in GBHV-177 markedly declined in the leaf and root tissues till 40 DAS under water deficit stress condition. It is concluded that during water stress leaf tissues of drought-tolerant genotype shows higher reactions of an antioxidative pathway to cope up drought stress. Thus, the existence of this variability in the cotton genotypes might be used by the breeder for improvement of cotton productivity under drought or water deficit stress condition