95 research outputs found

    Supporting genetics in primary care: investigating how theory can inform professional education

    Get PDF
    Evidence indicates that many barriers exist to the integration of genetic case finding into primary care. We conducted an exploratory study of the determinants of three specific behaviours related to using breast cancer genetics referral guidelines effectively: 'taking a family history', 'making a risk assessment', and 'making a referral decision'. We developed vignettes of primary care consultations with hypothetical patients, representing a wide range of genetic risk for which different referral decisions would be appropriate. We used the Theory of Planned Behavior to develop a survey instrument to capture data on behavioural intention and its predictors (attitude, subjective norm, and perceived behavioural control) for each of the three behaviours and mailed it to a sample of Canadian family physicians. We used correlation and regression analyses to explore the relationships between predictor and dependent variables. The response rate was 96/125 (77%). The predictor variables explained 38-83% of the variance in intention across the three behaviours. Family physicians' intentions were lower for 'making a risk assessment' (perceived as the most difficult) than for the other two behaviours. We illustrate how understanding psychological factors salient to behaviour can be used to tailor professional educational interventions; for example, considering the approach of behavioural rehearsal to improve confidence in skills (perceived behavioural control), or vicarious reinforcement as where participants are sceptical that genetics is consistent with their role (subjective norm)

    Patient/family views on data sharing in rare diseases: study in the European LeukoTreat project.: Survey assessing data sharing in leukodystrophies

    Get PDF
    International audienceThe purpose of this study was to explore patient and family views on the sharing of their medical data in the context of compiling a European leukodystrophies database. A survey questionnaire was delivered with help from referral centers and the European Leukodystrophies Association, and the questionnaires returned were both quantitatively and qualitatively analyzed. This study found that patients/families were strongly in favor of participating. Patients/families hold great hope and trust in the development of this type of research. They have a strong need for information and transparency on database governance, the conditions framing access to data, all research conducted, partnerships with the pharmaceutical industry, and they also need access to results. Our findings bring ethics-driven arguments for a process combining initial broad consent with ongoing information. On both, we propose key item-deliverables to database participants

    The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The eMERGE (electronic MEdical Records and GEnomics) Network is an NHGRI-supported consortium of five institutions to explore the utility of DNA repositories coupled to Electronic Medical Record (EMR) systems for advancing discovery in genome science. eMERGE also includes a special emphasis on the ethical, legal and social issues related to these endeavors.</p> <p>Organization</p> <p>The five sites are supported by an Administrative Coordinating Center. Setting of network goals is initiated by working groups: (1) Genomics, (2) Informatics, and (3) Consent & Community Consultation, which also includes active participation by investigators outside the eMERGE funded sites, and (4) Return of Results Oversight Committee. The Steering Committee, comprised of site PIs and representatives and NHGRI staff, meet three times per year, once per year with the External Scientific Panel.</p> <p>Current progress</p> <p>The primary site-specific phenotypes for which samples have undergone genome-wide association study (GWAS) genotyping are cataract and HDL, dementia, electrocardiographic QRS duration, peripheral arterial disease, and type 2 diabetes. A GWAS is also being undertaken for resistant hypertension in ≈2,000 additional samples identified across the network sites, to be added to data available for samples already genotyped. Funded by ARRA supplements, secondary phenotypes have been added at all sites to leverage the genotyping data, and hypothyroidism is being analyzed as a cross-network phenotype. Results are being posted in dbGaP. Other key eMERGE activities include evaluation of the issues associated with cross-site deployment of common algorithms to identify cases and controls in EMRs, data privacy of genomic and clinically-derived data, developing approaches for large-scale meta-analysis of GWAS data across five sites, and a community consultation and consent initiative at each site.</p> <p>Future activities</p> <p>Plans are underway to expand the network in diversity of populations and incorporation of GWAS findings into clinical care.</p> <p>Summary</p> <p>By combining advanced clinical informatics, genome science, and community consultation, eMERGE represents a first step in the development of data-driven approaches to incorporate genomic information into routine healthcare delivery.</p

    Are all ‘research fields’ equal? Rethinking practice for the use of data from crowd-sourcing market places

    Get PDF
    New technologies like large-scale social media sides (e.g., Facebook and Twitter) and crowdsourcing services (e.g., Amazon Mechanical Turk, Crowdflower, Clickworker) impact social science research and provide many new and interesting avenues for research. The use of these new technologies for research has not been without challenges and a recently published psychological study on Facebook led to a widespread discussion on the ethics of conducting large-scale experiments online. Surprisingly little has been said about the ethics of conducting research using commercial crowdsourcing market places. In this paper, I want to focus on the question of which ethical questions are raised by data collection with crowdsourcing tools. I briefly draw on implications of internet research more generally and then focus on the specific challenges that research with crowdsourcing tools faces. I identify fair-pay and related issues of respect for autonomy as well as problems with power dynamics between researcher and participant, which has implications for ‘withdrawal-withoutprejudice’, as the major ethical challenges with crowdsourced data. Further, I will to draw attention on how we can develop a ‘best practice’ for researchers using crowdsourcing tools

    Evolution of complexity in the zebrafish synapse proteome

    Get PDF
    The proteome of human brain synapses is highly complex and mutated in over 130 diseases. This complexity arose from two whole genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases, however its synapse proteome is uncharacterised and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterisation of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the Post Synaptic Density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ~1000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate vertebrate species evolved distinct synapse types and functions. The datasets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases

    Ethical and legal implications of whole genome and whole exome sequencing in African populations

    Get PDF
    BACKGROUND: Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. DISCUSSION: Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource limited settings. SUMMARY: We conclude that, in order to meet the unique requirements of performing next generation sequencing-related research in African populations, novel approaches to the informed consent process are required. This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent adheres to acceptable data protection levels with regard to use and transfer of such information

    Bridging consent: from toll bridges to lift bridges?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to share human biological samples, associated data and results across disease-specific and population-based human research biobanks is becoming increasingly important for research into disease development and translation. Although informed consent often does not anticipate such cross-domain sharing, it is important to examine its plausibility. The purpose of this study was to explore the feasibility of bridging consent between disease-specific and population-based research. Comparative analyses of 1) current ethical and legal frameworks governing consent and 2) informed consent models found in disease-specific and population-based research were conducted.</p> <p>Discussion</p> <p>Ethical and legal frameworks governing consent dissuade cross-domain data sharing. Paradoxically, analysis of consent models for disease-specific and population-based research reveals such a high degree of similarity that bridging consent could be possible if additional information regarding bridging was incorporated into consent forms. We submit that bridging of consent could be supported if current trends endorsing a new interpretation of consent are adopted. To illustrate this we sketch potential bridging consent scenarios.</p> <p>Summary</p> <p>A bridging consent, respectful of the spirit of initial consent, is feasible and would require only small changes to the content of consents currently being used. Under a bridging consent approach, the initial data and samples collection can serve an identified research project as well as contribute to the creation of a resource for a range of other projects.</p
    corecore