44 research outputs found

    Soil stabilization with lime for the construction of forest roads

    Get PDF
    The mechanical performance of soil stabilization using lime to improve forest roads was assessed. This study was conducted with lateritic soil (LVAd30) using lime content of 2% in the municipality of Niquelândia, Goiás state, Brazil. Geotechnical tests of soil characterization, compaction, and mechanical strength were performed applying different compaction efforts and curing periods. The results showed that lime content significantly changed the mechanical performance of natural soil, increasing its mechanical strength and load-carrying capacity. Compaction effort and curing time provided different responses in the unconfined compressive strength (UCS) and California Bearing Ratio (CBR) tests. The best UCS value (786.59 kPa) for the soil-lime mixture was achieved with modified compaction effort and curing time of 28 days. In the CBR test, soil-lime mixtures compacted at intermediate and modified efforts and cured for 28 days were considered for application as subbase material of flexible road pavements, being a promising alternative for use in layers of forest roads

    Effects of Aluminum Oxide Nanoparticles on the Growth, Development, and microRNA Expression of Tobacco (Nicotiana tabacum)

    Get PDF
    Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al2O3 nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al2O3 nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al2O3 nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al2O3 nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al2O3 nanoparticles in the environment

    DNA Vaccines against Dengue Virus Type 2 Based on Truncate Envelope Protein or Its Domain III

    Get PDF
    Two DNA vaccines were constructed encoding the ectodomain (domains I, II and III) of the DENV2 envelope protein (pE1D2) or only its domain III (pE2D2), fused to the human tissue plasminogen activator signal peptide (t-PA). The expression and secretion of recombinant proteins was confirmed in vitro in BHK cells transfected with the two plasmids, detected by immunofluorescence or immunoprecipitation of metabolically labeled gene products, using polyclonal and monoclonal antibodies against DENV2. Besides, results reveal that the ectodomain of the E protein can be efficiently expressed in vivo, in a mammalian system, without the prM protein that is hypothesized to act as a chaperonin during dengue infection. Balb/c mice were immunized with the DNA vaccines and challenged with a lethal dose of DENV2. All pE1D2-vaccinated mice survived challenge, while 45% of animals immunized with the pE2D2 died after infection. Furthermore, only 10% of pE1D2-immunized mice presented some clinical signs of infection after challenge, whereas most of animals inoculated with the pE2D2 showed effects of the disease with high morbidity degrees. Levels of neutralizing antibodies were significantly higher in pE1D2-vaccinated mice than in pE2D2-immunized animals, also suggesting that the pE1D2 vaccine was more protective than the pE2D2

    Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes

    Get PDF
    Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration

    Retention of a recombinant GFP protein expressed by the yellow fever 17D virus in the E/NS1 intergenic region in the endoplasmic reticulum

    Full text link
    The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein

    Efeitos da dieta suplementada com ômega-3 no músculo sóleo de ratos submetidos à natação: análise histológica e morfométrica

    Get PDF
    As lesões musculares têm sido observadas como as mais frequentes nos esportes. Considerando a produção de espécies reativas de oxigênio como um fator de risco para instalação de lesões e características antioxidantes e anti-inflamatórias do ômega-3, o objetivo deste trabalho foi verificar as alterações histológicas e morfométricas do músculo sóleo de ratos que realizaram natação, associado a uma dieta suplementada com ômega-3. Para sua realização foram utilizados 31 ratos Wistar divididos em quatro grupos, sendo os grupos A e C suplementados com azeite de oliva e B e D com 3g/dia de ômega-3 por quatro semanas. Os grupos C e D foram submetidos à natação cinco dias/semana por 28 dias, com acréscimo de 5% do peso corporal a partir da segunda semana, enquanto que os grupos A e B não realizaram treinamento. Após este período os animais foram sacrificados, o músculo sóleo retirado e corado com Hematoxilina-eosina para avaliação morfológica. Análise de variância bifatorial, com nível de significância de 5%, foi utilizada para análise dos valores do menor diâmetro das fibras musculares. Os grupos A e B (sedentários) apresentaram padrões histológicos de normalidade. O grupo C apresentou aumento do tecido endomisial e do número de núcleos, presença de fibras fagocitadas e de contornos poligonais não mantidos, enquanto que o grupo D apresentou poucas fibras fagocitadas e de contornos poligonais preservados. Com relação à medida do menor diâmetro das fibras musculares, as análises mostraram diferenças para o fator treinamento, mas não para o fator suplementação e a interação entre eles. As alterações histológicas induzidas pelo exercício foram atenuadas no grupo suplementado com ômega-3, sugerindo um efeito protetor da suplementação, contudo, o aumento do diâmetro das fibras para os grupos expostos ao exercício está relacionado ao efeito do treinamento e não à suplementação.Muscle injuries have been observed as the most frequent in sports. Considering the production of Reactive Oxygen Species as a risk factor for installation of injuries and antioxidant and anti-inflammatory characteristics of Omega-3, the objective of this study was to evaluate the histological and morphometric changes of the soleus muscle of rats that practiced swimming, associated with a diet supplemented with Omega-3. 31 Wistar rats divided into 4 groups were used, namely groups A and C supplemented with olive oil and B and D with 3g/day of Omega-3, for 4 weeks. Groups C and D were submitted to swimming for 5 days / week during 28 days, with addition of 5% of body weight from the second week on; while groups A and B did not perform training. After this period the animals were sacrificed, the soleus muscle removed and stained with hematoxylin and eosin for morphological evaluation. Bifactorial analysis of variance with significance level of 5% was used for analysis of values of smallest diameter of the muscle fibers. Groups A and B (sedentary) presented normal histological patterns. Group C showed increase of endomisial tissue and number of nuclei, presence of phagocytized fibers and not maintained polygonal contours, whereas group D showed few phagocytized fibers and polygonal contours preserved. Regarding the measurement of the smallest diameter of the muscle fibers, the analyses showed differences for the training factor, but not for the supplementation factor or interaction between them. The histological changes induced by exercise were attenuated in the group supplemented with Omega-3, suggesting hence a protective effect of supplementation; however, the diameter increase of the fibers for the groups exposed to exercise is related to the training effect and not to supplementation
    corecore