102 research outputs found

    Phase-Change Meta-Devices for Tuneable Bandpass Filtering in the Infrared

    Get PDF
    Tuneable light filters, especially those which are compact and fast to tune, are essential in a wide range of technologies, especially for multispectral imaging applications. However, state-of-the-art approaches to create such filters all possess drawbacks, with many wavelength regions poorly served. This thesis attempts to address this problem by combining metasurfaces which support extraordinary optical transmission (ultra-thin band-pass filters) with chalcogenide phase-change materials (adding dynamic tuneability). The optical properties of phase-change materials are very different in their amorphous and crystalline states and switching between such states can be rapidly controlled via thermal excitations. In this work nine different phase-change materials, including alloys of GeTe, GeSbTe, GeSbSeTe and GaLaS, were optically and elementally characterised and assessed for their application-specific suitability. The resulting materials data was used to computationally design and evaluate a range of tuneable infrared filter device designs both optically and thermally. These filters exhibit high transmission (≈80% at best) with large spectral tuning ranges of approximately +50% relative to their shortest wavelength; this range is sufficient to cover entire atmospheric transmission windows. This is the first such combination of phase-change materials and extraordinary optical transmission for application from the visible through to long-wave infrared (14 μm) regions of the spectrum. A rigorous computational study was conducted to produce comprehensive design guidelines for such filters, and confirm the viability of in-situ electrical switching. Several filter devices were experimentally fabricated, and the viability for a number of applications, including tuneable filtering, chemical sensing and infrared displays, was investigated and confirmed computationally.Engineering and Physical Sciences Research Council (EPSRC

    Phase-change band-pass filters for multispectral imaging

    Get PDF
    This is the author accepted manuscript. The final version is available from SPIE via the DOI in this recordPhase-change materials (PCMs) provide a route to adding dynamic tunability and reconfigurability to many types of photonic devices by changing the phase-state of the PCM itself. In this work we discuss the use of the phase-change alloy GeSbTe (GST) in the design of dynamically tunable filters operating in the infrared. GST is used to manipulate the extraordinary optical transmission of a periodic hole-array in a metallic layer, so creating ultra-thin, tunable band-pass filters. We discuss the use of such filters for multispectral imaging, suggest some approaches to overcome various practical challenges, and, finally, show that through the use of appropriate post processing algorithms this tunable filter could provide a cheap, ultra-thin, real-time, and relatively high performance multispectral imaging device.CDW acknowledges funding via the US Naval Research Laboratories ONRG programme (#N62909-16-1-2174) and the EPSRC ChAMP and WAFT grants (EP/M015130/1 and EP/M015173/1). LT acknowledges funding via the EPSRC CDT in Metamaterials (EP/L015331/1) and via QinetiQ PL

    Defining the mechanism for compaction of the CV chondrite parent body

    Get PDF
    The Allende meteorite, a relatively unaltered member of the CV carbonaceous chondrite group, contains primitive crystallographic textures that can inform our understanding of early Solar System planetary compaction. To test between models of porosity reduction on the CV parent body, complex microstructures within ~0.5-mm-diameter chondrules and ~10-µm-long matrix olivine grains were analyzed by electron backscatter diffraction (EBSD) techniques. The large area map presented is one of the most extensive EBSD maps to have been collected in application to extraterrestrial materials. Chondrule margins preferentially exhibit limited intragrain crystallographic misorientation due to localized crystal-plastic deformation. Crystallographic preferred orientations (CPOs) preserved by matrix olivine grains are strongly coupled to grain shape, most pronounced in shortest dimension < a >, yet are locally variable in orientation and strength. Lithostatic pressure within plausible chondritic model asteroids is not sufficient to drive compaction or create the observed microstructures if the aggregate was cold. Significant local variability in the orientation and intensity of compaction is also inconsistent with a global process. Detailed microstructures indicative of crystal-plastic deformation are consistent with brief heating events that were small in magnitude. When combined with a lack of sintered grains and the spatially heterogeneous CPO, ubiquitous hot isostatic pressing is unlikely to be responsible. Furthermore, Allende is the most metamorphosed CV chondrite, so if sintering occurred at all on the CV parent body it would be evident here. We conclude that the crystallographic textures observed reflect impact compaction and indicate shock-wave directionality. We therefore present some of the first significant evidence for shock compaction of the CV parent body

    A nonvolatile phase-change metamaterial color display

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.Chalcogenide phase-change materials, which exhibit a marked difference in their electrical and optical properties when in their amorphous and crystalline phases and can be switched between these phases quickly and repeatedly, are traditionally exploited to deliver nonvolatile data storage in the form of rewritable optical disks and electrical phase-change memories. However, exciting new potential applications are now emerging in areas such as integrated phase-change photonics, phase-change optical metamaterials/metasurfaces, and optoelectronic displays. Here, ideas from these last two fields are fused together to deliver a novel concept, namely a switchable phase-change metamaterial/metasurface resonant absorber having nonvolatile color generating capabilities. With the phase-change layer, here GeTe, in the crystalline phase, the resonant absorber can be tuned to selectively absorb the red, green, and blue spectral bands of the visible spectrum, so generating vivid cyan, magenta, and yellow pixels. When the phase-change layer is switched into the amorphous phase, the resonant absorption is suppressed and a flat, pseudowhite reflectance results. Thus, a route to the potential development is opened-up of nonvolatile, phase-change metamaterial color displays and color electronic signage.Engineering and Physical Sciences Research Council (EPSRC

    Phase-change meta-photonics

    Get PDF
    We combine phase-change materials and metamaterial arrays (metasurfaces) to create new forms of dynamic, tuneable and reconfigurable photonic devices including ‘perfect’ absorbers, infra-red light modulators, optical beam steerers and enhanced phase-change optoelectronic displays

    Phase-change metadevices for the dynamic and reconfigurable control of light

    Get PDF
    This is the author accepted manuscript. The final version is available from Optical Society of America via the DOI in this recordNovel Optical Materials and Applications 2018, 2–5 July 2018, Zurich, SwitzerlandThe combination of chalcogenide phase-change materials with optical metamaterial arrays is exploited to create new forms of dynamic, tuneable and reconfigurable photonic devices including perfect absorbers, modulators, beam steerers and filters.CDW and VKN acknowledge ONRG funding (#N62909-16-1-2174). CDW, AMA, Y-YA, VKN acknowledge EPSRC funding EP/M015130/1 & EP/M015173/1. CrdeG, SG-CC, EG and LT the EPSRC CDT in Metamaterials (EP/L015331/1). LT acknowledges support from QinetiQ. MLG acknowledges EPSRC funding EP/M009033/1

    Hidden secrets of deformation: Impact-induced compaction within a CV chondrite

    Get PDF
    The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1—essentially unshocked—using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample

    Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry

    Get PDF
    This is the final version. Available on open access from the Optical Society via the DOI in this recordPhase-change materials, such as the well-known ternary alloy Ge2Sb2Te5, are essential to many types of photonic devices, from re-writeable optical disk memories to more recent developments such as phase-change displays, reconfigurable optical metasurfaces, and integrated phase-change photonic devices and systems. The successful design and development of such applications and devices requires accurate knowledge of the complex refractive index of the phase-change material being used. To this end, it is common practice to rely on published experimental refractive index data. However, published values can vary quite significantly for notionally the same composition, no doubt due to variations in fabrication/deposition processes. Rather than rely on published data, a more reliable approach to index determination is to measure the properties of as-fabricated films, and this is usually carried out using specialized and dedicated ellipsometric equipment. In this paper, we propose a simple and effective alternative to ellipsometry, based on spectroscopic reflectance measurements of Fabry–Perot phase-change nanocavities. We describe this alternative approach in detail, apply it to measurement of the complex index of the archetypal phase-change materials Ge2Sb2Te5 and GeTe, and compare the results to those obtained using conventional ellipsometry, where we find good agreement.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 2020Science and Technology Facilities Council (STFC

    Boom boom pow: Shock-facilitated aqueous alteration and evidence for two shock events in the Martian nakhlite meteorites

    Get PDF
    Nakhlite meteorites are ~1.4 to 1.3 Ga old igneous rocks, aqueously altered on Mars ~630 Ma ago. We test the theory that water-rock interaction was impact driven. Electron backscatter diffraction demonstrates that the meteorites Miller Range 03346 and Lafayette were heterogeneously deformed, leading to localized regions of brecciation, plastic deformation, and mechanical twinning of augite. Numerical modeling shows that the pattern of deformation is consistent with shock-generated compressive and tensile stresses. Mesostasis within shocked areas was aqueously altered to phyllosilicates, carbonates, and oxides, suggesting a genetic link between the two processes. We propose that an impact ~630 Ma ago simultaneously deformed the nakhlite parent rocks and generated liquid water by melting of permafrost. Ensuing water-rock interaction focused on shocked mesostasis with a high density of reactive sites. The nakhlite source location must have two spatially correlated craters, one ~630 Ma old and another, ejecting the meteorites, ~11 Ma ago
    corecore