7 research outputs found

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    Development and Evaluation of a Sound-Swapped Video Database for Misophonia.

    No full text
    Misophonia has been characterized as intense negative reactions to specific trigger sounds (often orofacial sounds like chewing, sniffling, or slurping). However, recent research suggests high-level, contextual, and multisensory factors are also involved. We recently demonstrated that neurotypicals negative reactions to aversive sounds (e.g., nails scratching a chalkboard) are attenuated when the sounds are synced with positive attributable video sources (PAVS; e.g., tearing a piece of paper). To assess whether this effect generalizes to misophonic triggers, we developed a Sound-Swapped Video (SSV) database for use in misophonia research. In Study 1, we created a set of 39 video clips depicting common trigger sounds (original video sources, OVS) and a corresponding set of 39 PAVS temporally synchronized with the OVS videos. In Study 2, participants (N = 34) rated the 39 PAVS videos for their audiovisual match and pleasantness. We selected the 20 PAVS videos with best match scores for use in Study 3. In Study 3, a new group of participants (n = 102) observed the 20 selected PAVS and 20 corresponding OVS and judged the pleasantness or unpleasantness of each sound in the two contexts accompanying each video. Afterward, participants completed the Misophonia Questionnaire (MQ). The results of Study 3 show a robust attenuating effect of PAVS videos on the reported unpleasantness of trigger sounds: trigger sounds were rated as significantly less unpleasant when paired with PAVS with than OVS. Moreover, this attenuating effect was present in nearly every participant (99 out of 102) regardless of their score on the MQ. In fact, we found a moderate positive correlation between the PAVS-OVS difference and misophonia severity scores. Overall our results provide validation that the SSV database is a useful stimulus database to study how misophonic responses can be modulated by visual contexts. Here, we release the SSV database with the best 18 PAVS and 18 OVS videos used in Study 3 along with aggregate ratings of audio-video match and pleasantness (https://osf.io/3ysfh/). We also provide detailed instructions on how to produce these videos, with the hope that this database grows and improves through collaborations with the community of misophonia researchers

    Selective release of molecules from weibel-palade bodies during a lingering kiss

    No full text
    Exocytosis of specialized endothelial cell secretory organelles, Weibel-Palade bodies (WPBs), is thought to play an important role in regulating hemostasis and intravascular inflammation. The major WPB core proteins are Von Willebrand factor (VWF) and its propolypeptide (Proregion), constituting more than 95% of the content. Although the composition of the WPBs can be fine-tuned to include cytokines and chemokines (eg, interleukin-8 [IL-8] and eotaxin-3), it is generally assumed that WPB exocytosis is inextricably associated with secretion of VWF. Here we show that WPBs can undergo a form of exocytosis during which VWF and Proregion are retained while smaller molecules, such as IL-8, are released. Imaging individual WPBs containing fluorescent cargo molecules revealed that during weak stimulation approximately 25% of fusion events result in a failure to release VWF or Proregion. The WPB membrane protein P-selectin was also retained; however, the membrane tetraspannin CD63 was released. Accumulation or exclusion of extracellular fluorescent dextran molecules ranging from 3 kDa to 2 mDa show that these events arise due to the formation of a fusion pore approximately 12 nm in diameter. The pore behaves as a molecular filter, allowing selective release of WPB core and membrane proteins. WPB exocytosis is not inextricably associated with secretion of VWF

    Respiratory Tract and Mediastinum

    No full text
    corecore