1,328 research outputs found
Time-reversal focusing of an expanding soliton gas in disordered replicas
We investigate the properties of time reversibility of a soliton gas,
originating from a dispersive regularization of a shock wave, as it propagates
in a strongly disordered environment. An original approach combining
information measures and spin glass theory shows that time reversal focusing
occurs for different replicas of the disorder in forward and backward
propagation, provided the disorder varies on a length scale much shorter than
the width of the soliton constituents. The analysis is performed by starting
from a new class of reflectionless potentials, which describe the most general
form of an expanding soliton gas of the defocusing nonlinear Schroedinger
equation.Comment: 7 Pages, 6 Figure
Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schroedinger equation
We characterize the full family of soliton solutions sitting over a
background plane wave and ruled by the cubic-quintic nonlinear Schroedinger
equation in the regime where a quintic focusing term represents a saturation of
the cubic defocusing nonlinearity. We discuss existence and properties of
solitons in terms of catastrophe theory and fully characterize bistability and
instabilities of the dark-antidark pairs, revealing new mechanisms of decay of
antidark solitons.Comment: 8 pages, 10 figures, accepted in PR
Spontaneously generated X-shaped light bullets
We observe the formation of an intense optical wavepacket fully localized in
all dimensions, i.e. both longitudinally (in time) and in the transverse plane,
with an extension of a few tens of fsec and microns, respectively. Our
measurements show that the self-trapped wave is a X-shaped light bullet
spontaneously generated from a standard laser wavepacket via the nonlinear
material response (i.e., second-harmonic generation), which extend the soliton
concept to a new realm, where the main hump coexists with conical tails which
reflect the symmetry of linear dispersion relationship.Comment: 5 pages, 4 figures, submitted for publicatio
Optimal frequency conversion in the nonlinear stage of modulation instability
We investigate multi-wave mixing associated with the strongly pump depleted
regime of induced modulation instability (MI) in optical fibers. For a complete
transfer of pump power into the sideband modes, we theoretically and
experimentally demonstrate that it is necessary to use a much lower seeding
modulation frequency than the peak MI gain value. Our analysis shows that a
record 95 % of the input pump power is frequency converted into the comb of
sidebands, in good quantitative agreement with analytical predictions based on
the simplest exact breather solution of the nonlinear Schr\"odinger equation
Mating Patterns and Post-Mating Isolation in Three Cryptic Species of the Engystomops Petersi Species Complex
Determining the extent of reproductive isolation in cryptic species with dynamic geographic ranges can yield important insights into the processes that generate and maintain genetic divergence in the absence of severe geographic barriers. We studied mating patterns, propensity to hybridize in nature and subsequent fertilization rates, as well as survival and development of hybrid F1 offspring for three nominal species of the Engystomops petersi species complex in YasunĂ National Park, Ecuador. We found at least two species in four out of six locations sampled, and 14.3% of the wild pairs genotyped were mixed-species (heterospecific) crosses. We also found reduced fertilization rates in hybrid crosses between E. petersi females and E. âmagnusâ males, and between E. âmagnusâ females and E. âselvaâ males but not in the reciprocal crosses, suggesting asymmetric reproductive isolation for these species. Larval development times decreased in F1 hybrid crosses compared to same species (conspecific) crosses, but we did not find significant reduction in larval survival or early metamorph survival. Our results show evidence of post-mating isolation for at least two hybrid crosses of the cryptic species we studied. The general decrease in fertilization rates in heterospecific crosses suggests that sexual selection and reinforcement might have not only contributed to the pattern of call variation and behavioral isolation we see between species today, but they may also contribute to further signal divergence and behavioral evolution, especially in locations where hybridization is common and fertilization success is diminished
The use of arc-erosion as a patterning technique for transparent conductive materials
Within the framework of cost-effective patterning processes a novel technique that saves photolithographic processing steps, easily scalable to wide area production, is proposed. It consists of a tip-probe, which is biased with respect to a conductive substrate and slides on it, keeping contact with the material. The sliding tip leaves an insulating path (which currently is as narrow as 30 ÎŒm) across the material, which enables the drawing of tracks and pads electrically insulated from the surroundings. This ablation method, called arc-erosion, requires an experimental set up that had to be customized for this purpose and is described. Upon instrumental monitoring, a brief proposal of the physics below this process is also presented. As a result an optimal control of the patterning process has been acquired. The system has been used on different substrates, including indium tin oxide either on glass or on polyethylene terephtalate, as well as alloys like Au/Cr, and Al. The influence of conditions such as tip speed and applied voltage is discusse
Mating Patterns and Post-Mating Isolation in Three Cryptic Species of the Engystomops Petersi Species Complex
Determining the extent of reproductive isolation in cryptic species with dynamic geographic ranges can yield important insights into the processes that generate and maintain genetic divergence in the absence of severe geographic barriers. We studied mating patterns, propensity to hybridize in nature and subsequent fertilization rates, as well as survival and development of hybrid F1 offspring for three nominal species of the Engystomops petersi species complex in YasunĂ National Park, Ecuador. We found at least two species in four out of six locations sampled, and 14.3% of the wild pairs genotyped were mixed-species (heterospecific) crosses. We also found reduced fertilization rates in hybrid crosses between E. petersi females and E. âmagnusâ males, and between E. âmagnusâ females and E. âselvaâ males but not in the reciprocal crosses, suggesting asymmetric reproductive isolation for these species. Larval development times decreased in F1 hybrid crosses compared to same species (conspecific) crosses, but we did not find significant reduction in larval survival or early metamorph survival. Our results show evidence of post-mating isolation for at least two hybrid crosses of the cryptic species we studied. The general decrease in fertilization rates in heterospecific crosses suggests that sexual selection and reinforcement might have not only contributed to the pattern of call variation and behavioral isolation we see between species today, but they may also contribute to further signal divergence and behavioral evolution, especially in locations where hybridization is common and fertilization success is diminished
Modulational instability in dispersion-kicked optical fibers
We study, both theoretically and experimentally, modulational instability in
optical fibers that have a longitudinal evolution of their dispersion in the
form of a Dirac delta comb. By means of Floquet theory, we obtain an exact
expression for the position of the gain bands, and we provide simple analytical
estimates of the gain and of the bandwidths of those sidebands. An experimental
validation of those results has been realized in several microstructured fibers
specifically manufactured for that purpose. The dispersion landscape of those
fibers is a comb of Gaussian pulses having widths much shorter than the period,
which therefore approximate the ideal Dirac comb. Experimental spontaneous MI
spectra recorded under quasi continuous wave excitation are in good agreement
with the theory and with numerical simulations based on the generalized
nonlinear Schr\"odinger equation
Heteroclinic structure of parametric resonance in the nonlinear Schr\"odinger equation
We show that the nonlinear stage of modulational instability induced by
parametric driving in the {\em defocusing} nonlinear Schr\"odinger equation can
be accurately described by combining mode truncation and averaging methods,
valid in the strong driving regime. The resulting integrable oscillator reveals
a complex hidden heteroclinic structure of the instability. A remarkable
consequence, validated by the numerical integration of the original model, is
the existence of breather solutions separating different Fermi-Pasta-Ulam
recurrent regimes. Our theory also shows that optimal parametric amplification
unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues)
arising from the linearised Floquet analysis
Crossover dynamics of dispersive shocks in Bose-Einstein condensates characterized by two and three-body interactions
We show that the perturbative nonlinearity associated with three-atom
interactions, competing with standard two-body repulsive interactions, can
change dramatically the evolution of 1D dispersive shock waves in a
Bose-Einstein condensate. In particular, we prove the existence of a rich
crossover dynamics, ranging from the formation of multiple shocks regularized
by coexisting trains of dark and antidark matter waves, to 1D soliton collapse.
For a given scattering length, all these different regimes can be accessed by
varying the number of atoms in the condensate.Comment: 4 pages, 5 figure
- âŠ