We investigate the properties of time reversibility of a soliton gas,
originating from a dispersive regularization of a shock wave, as it propagates
in a strongly disordered environment. An original approach combining
information measures and spin glass theory shows that time reversal focusing
occurs for different replicas of the disorder in forward and backward
propagation, provided the disorder varies on a length scale much shorter than
the width of the soliton constituents. The analysis is performed by starting
from a new class of reflectionless potentials, which describe the most general
form of an expanding soliton gas of the defocusing nonlinear Schroedinger
equation.Comment: 7 Pages, 6 Figure