25 research outputs found

    Broad anatomical variation within a narrow wood density range : a study of twig wood across 69 Australian angiosperms

    Get PDF
    Objectives: Just as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications. Methods: Twig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38–0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity). Results: Despite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P < 0.001). Parenchyma was weakly (0.24 ≤|r|≤ 0.35, P < 0.05) or not associated with vessel properties nor with height, leaf area to sapwood area ratio, and modulus of elasticity (0.24 ≤|r|≤ 0.41, P < 0.05). However, vessel traits were fairly well correlated with height and leaf area to sapwood area ratio (0.47 ≤|r|≤ 0.65, all P < 0.001). Modulus of elasticity was mainly driven by fibre wall plus vessel wall fraction rather than by the parenchyma component. Conclusions: Overall, there seem to be at least three axes of variation in xylem, substantially independent of each other: a wood density spectrum, a fibre-parenchyma spectrum, and a vessel area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation

    Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine

    Get PDF
    8noWater saving under drought stress is assured by stomatal closure driven by active (ABA-mediated) and/or passive (hydraulic-mediated) mechanisms. There is currently no comprehensive model nor any general consensus about the actual contribution and relative importance of each of the above factors in modulating stomatal closure in planta. In the present study, we assessed the contribution of passive (hydraulic) vs active (ABA mediated) mechanisms of stomatal closure in V. vinifera plants facing drought stress. Leaf gas exchange decreased progressively to zero during drought, and embolism-induced loss of hydraulic conductance in petioles peaked to ∼50% in correspondence with strong daily limitation of stomatal conductance. Foliar ABA significantly increased only after complete stomatal closure had already occurred. Rewatering plants after complete stomatal closure and after foliar ABA reached maximum values did not induced stomatal re-opening, despite embolism recovery and water potential rise. Our data suggest that in grapevine stomatal conductance is primarily regulated by passive hydraulic mechanisms. Foliar ABA apparently limits leaf gas exchange over long-term, also preventing recovery of stomatal aperture upon rewatering, suggesting the occurrence of a mechanism of long-term down-regulation of transpiration to favor embolism repair and preserve water under conditions of fluctuating water availability and repeated drought events.openopenTombesi, Sergio; Nardini, Andrea; Frioni, Tommaso; Soccolini, Marta; Zadra, Claudia; Farinelli, Daniela; Poni, Stefano; Palliotti, AlbertoTombesi, Sergio; Nardini, Andrea; Frioni, Tommaso; Soccolini, Marta; Zadra, Claudia; Farinelli, Daniela; Poni, Stefano; Palliotti, Albert

    Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs

    Get PDF
    Understanding which species are able to recover from drought, under what conditions, and the mechanistic processes involved, will facilitate predictions of plant mortality in response to global change. In response to drought, some species die because of embolism-induced hydraulic failure, whilst others are able to avoid mortality and recover, following rehydration. Several tree species have evolved strategies to avoid embolism, whereas others tolerate high embolism rates but can recover their hydraulic functioning upon drought relief. Here, we focus on structures and processes that might allow some plants to recover from drought stress via embolism reversal. We provide insights into how embolism repair may have evolved, anatomical and physiological features that facilitate this process, and describe possible trade-offs and related costs. Recent controversies on methods used for estimating embolism formation/repair are also discussed, providing some methodological suggestions. Although controversial, embolism repair processes are apparently based on the activity of phloem and ray/axial parenchyma. The mechanism is energetically demanding, and the costs to plants include metabolism and transport of soluble sugars, water and inorganic ions. We propose that embolism repair should be considered as a possible component of a \u2018hydraulic efficiency-safety\u2019 spectrum. We also advance a framework for vegetation models, describing how vulnerability curves may change in hydrodynamic model formulations for plants that recover from embolism
    corecore