245 research outputs found

    Search for rare processes with ZnWO4 crystal scintillators

    Get PDF
    Radiopure ZnWO4 crystal scintillators with mass (0.1–0.7 kg) have been developed and put in measurement in the Gran Sasso National Laboratories of the INFN to search for rare processes. The radioactive contamination of the crystals have been estimated and the double beta decay of zinc and tungsten isotopes was searched for, reaching a sensitivity at the level of 1018 − 1021 yr; in addition a new half-life limit on alpha transition of 183W to the metastable excited level of 179Hf has also been obtained. The achieved radiopurity of the ZnWO4 crystals make them very promising detectors for ββ decay investigations while their anisotropic features make them very interesting detectors to investigate dark matter particles directionality

    Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector

    Get PDF
    We present results from a search for neutrinoless double-β (0νββ) decay using 36.6 g of the isotope 150Nd with data corresponding to a live time of 5.25 y recorded with the NEMO-3 detector. We construct a complete background model for this isotope, including a measurement of the two-neutrino double-β decay half-life of T2ν 1=2 ¼ ½9.34 0.22ðstatÞ þ0.62 −0.60 ðsystÞ × 1018 y for the ground state transition, which represents the most precise result to date for this isotope. We perform a multivariate analysis to search for 0νββ decays in order to improve the sensitivity and, in the case of observation, disentangle the possible underlying decay mechanisms. As no evidence for 0νββ decay is observed, we derive lower limits on half-lives for several mechanisms involving physics beyond the standard model. The observed lower limit, assuming light Majorana neutrino exchange mediates the decay, is T0ν 1=2 > 2.0 × 1022 y at the 90% C.L., corresponding to an upper limit on the effective neutrino mass of hmνi < 1.6–5.3 eV

    Development of 100^{100}Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

    Get PDF
    We report recent achievements in the development of scintillating bolometers to search for neutrinoless double-beta decay of 100^{100}Mo. The presented results have been obtained in the framework of the LUMINEU, LUCIFER and EDELWEISS collaborations, and are now part of the R\&D activities towards CUPID (CUORE Update with Particle IDentification), a proposed next-generation double-beta decay experiment based on the CUORE experience. We have developed a technology for the production of large mass (\sim1 kg), high optical quality, radiopure zinc and lithium molybdate crystal scintillators (ZnMoO4_4 and Li2_2MoO4_4, respectively) from deeply purified natural and 100^{100}Mo-enriched molybdenum. The procedure is applied for a routine production of enriched crystals. Furthermore, the technology of a single detector module consisting of a large-volume (100\sim 100~cm3^3) Zn100^{100}MoO4_4 and Li2_2100^{100}MoO4_4 scintillating bolometer has been established, demonstrating performance and radiopurity that are close to satisfy the demands of CUPID. In particular, the FWHM energy resolution of the detectors at 2615 keV --- near the QQ-value of the double-beta transition of 100^{100}Mo (3034~keV) --- is \approx 4--10~keV. The achieved rejection of α\alpha-induced dominant background above 2.6~MeV is at the level of more than 99.9\%. The bulk activity of 232^{232}Th (228^{228}Th) and 226^{226}Ra in the crystals is below 10 μ\muBq/kg. Both crystallization and detector technologies favor Li2_2MoO4_4, which was selected as a main element for the realization of a CUPID demonstrator (CUPID-0/Mo) with \sim7 kg of 100^{100}Mo

    Measurement of the 2 nu beta beta decay half-life and search for the 0 nu beta beta decay of Cd-116 with the NEMO-3 detector

    Get PDF
    The NEMO-3 experiment measured the half-life of the 2 ν β β decay and searched for the 0 ν β β decay of 116 Cd . Using 410 g of 116 Cd installed in the detector with an exposure of 5.26 y, ( 4968 ± 74 ) events corresponding to the 2 ν β β decay of 116 Cd to the ground state of 116 Sn have been observed with a signal to background ratio of about 12. The half-life of the 2 ν β β decay has been measured to be T 2 ν 1 / 2 = [ 2.74 ± 0.04 ( stat ) ± 0.18 ( syst ) ] × 1 0 19     y . No events have been observed above the expected background while searching for 0 ν β β decay. The corresponding limit on the half-life is determined to be T 0 ν 1 / 2 ≥ 1.0 × 1 0 23     y at the 90% C.L. which corresponds to an upper limit on the effective Majorana neutrino mass of ⟨ m ν ⟩ ≤ 1.4 – 2.5     eV depending on the nuclear matrix elements considered. Limits on other mechanisms generating 0 ν β β decay such as the exchange of R-parity violating supersymmetric particles, right-handed currents and majoron emission are also obtained

    Final results on ⁸²Se double beta decay to the ground state of ⁸²Kr from the NEMO-3 experiment

    Get PDF
    Using data from the NEMO-3 experiment, we have measured the two-neutrino double beta decay ( 2\nu \beta \beta) half-life of ^{82}Se as T_{\smash {1/2}}^{2\nu } \!=\! \left[ 9.39 \pm 0.17\left( \text{ stat }\right) \pm 0.58\left( \text{ syst }\right) \right] \times 10^{19} y under the single-state dominance hypothesis for this nuclear transition. The corresponding nuclear matrix element is \left| M^{2\nu }\right| = 0.0498 \pm 0.0016. In addition, a search for neutrinoless double beta decay ( 0\nu \beta \beta) using 0.93 kg of ^{82}Se observed for a total of 5.25 y has been conducted and no evidence for a signal has been found. The resulting half-life limit of T_{1/2}^{0\nu } > 2.5 \times 10^{23} \,\text{ y } \,(90\%\,\text{ C.L. }) for the light neutrino exchange mechanism leads to a constraint on the effective Majorana neutrino mass of \langle m_{\nu } \rangle < \left( 1.2{-}3.0\right) \,\text{ eV }, where the range reflects 0\nu \beta \beta nuclear matrix element values from different calculations. Furthermore, constraints on lepton number violating parameters for other 0\nu \beta \beta mechanisms, such as right-handed currents, majoron emission and R-parity violating supersymmetry modes have been set

    Calorimeter development for the SuperNEMO double beta decay experiment

    Get PDF
    SuperNEMO is a double-β decay experiment, which will employ the successful tracker–calorimeter technique used in the recently completed NEMO-3 experiment. SuperNEMO will implement 100 kg of double-β decay isotope, reaching a sensitivity to the neutrinoless double-β decay (0νββ) half-life of the order of 1026 yr, corresponding to a Majorana neutrino mass of 50–100 meV. One of the main goals and challenges of the SuperNEMO detector development programme has been to reach a calorimeter energy resolution, ΔE∕E, around 3%∕E(MeV) σ, or 7%∕E(MeV) FWHM (full width at half maximum), using a calorimeter composed of large volume plastic scintillator blocks coupled to photomultiplier tubes. We describe the R&D programme and the final design of the SuperNEMO calorimeter that has met this challenging goal

    Search for Neutrinoless Quadruple-beta Decay of Nd-150 with the NEMO-3 Detector

    Get PDF
    We report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-β decay of 150Nd using a total exposure of 0.19 kg·y recorded with the NEMO-3 detector at the Modane Underground Laboratory (LSM). We find no evidence of this decay and set lower limits on the half-life in the range T1/2 > (1.1–3.2) × 1021 y at the 90% CL, depending on the model used for the kinematic distributions of the emitted electrons

    Measurement of the beta beta Decay Half-Life of Te-130 with the NEMO-3 Detector

    Get PDF
    We report results from the NEMO-3 experiment based on an exposure of 1275 days with 661 g of Te-130 in the form of enriched and natural tellurium foils. The beta beta decay rate of Te-130 is found to be greater than zero with a significance of 7.7 standard deviations and the half-life is measured to be T-1/2(2v)=[7.0 +/- 0.9(stat) +/- 1: 1(syst)] x 10(20) yr. This represents the most precise measurement of this half- life yet published and the first real-time observation of this decay

    Experimental searches for rare alpha and beta decays

    No full text
    The current status of the experimental searches for rare alpha and beta decays is reviewed. Several interesting observations of alpha and beta decays, previously unseen due to their large half-lives (10^15 − 10^20 yr), have been achieved during the last years thanks to the improvements in the experimental techniques and to the underground locations of experiments that allows to suppress backgrounds. In particular, the list includes first observations of alpha decays of 151Eu, 180W (both to the ground state of the daughter nuclei), 190Pt (to excited state of the daughter nucleus), 209Bi (to the ground and excited states of the daughter nucleus). The isotope 209Bi has the longest known half-life of T1/2 ≈ 10^19 yr relatively to alpha decay. The beta decay of 115In to the first excited state of 115Sn (Eexc = 497.334 keV), recently observed for the first time, has the Qβ value of only (147 ± 10) eV, which is the lowest Qβ value known to-date. Searches and investigations of other rare alpha and beta decays (48Ca, 50V, 96Zr, 113Cd, 123Te, 178m2Hf, 180mTa and others) are also discussed.ingles
    corecore