157 research outputs found

    A comparison of uterine contractile responsiveness to arginine vasopressin in oviparous and viviparous lizards

    Get PDF
    Nonapeptides and their receptors regulate a diverse range of physiological processes. We assessed the contractile responsiveness of uteri from the squamate viviparous-oviparous species pair, Pseudemoia entrecasteauxii and Lampropholis guichenoti, as well as the bimodally reproductive species, Saiphos equalis, to arginine vasopressin (AVP). We assessed the resulting uterine contractility as a function of pregnancy status, species and parity mode. We also measured mRNA abundance for the nonapeptide receptor, oxytocin receptor (oxtr), in uteri from P. entrecasteauxii and L. guichenoti and compared expression across pregnancy status and parity mode. We found that pregnant uteri exhibited a significantly greater contractile response to AVP than non-pregnant uteri in all three lizard species studied. Cross-species comparisons revealed that uteri from viviparous P. entrecasteauxii were significantly more responsive to AVP than uteri from oviparous L. guichenoti during both pregnant and non-pregnant states. Conversely, for non-pregnant S. equalis, uteri from viviparous individuals were significantly less responsive to AVP than uteri from oviparous individuals, while during pregnancy, there was no difference in AVP contractile responsiveness. There was no difference in expression of oxtr between L. guichenoti and P. entrecasteauxii, or between pregnant and non-pregnant individuals within each species. We found no significant correlation between oxtr expression and AVP contractile responsiveness. These findings indicate that there are differences in nonapeptide signalling across parity mode and suggest that in these lizards, labour may be triggered either by an increase in plasma nonapeptide concentration, or by an increase in expression of a different nonapeptide receptor from the vasopressin-like receptor family

    Articular contact in a three-dimensional model of the knee

    Get PDF
    This study is aimed at the analysis of articular contact in a three-dimensional mathematical model of the human knee-joint. In particular the effect of articular contact on the passive motion characteristics is assessed in relation to experimentally obtained joint kinematics. Two basically different mathematical contact descriptions were compared for this purpose. One description was for rigid contact and one for deformable contact. The description of deformable contact is based on a simplified theory for contact of a thin elastic layer on a rigid foundation. The articular cartilage was described either as a linear elastic material or as a non-linear elastic material. The contact descriptions were introduced in a mathematical model of the knee. The locations of the ligament insertions and the geometry of the articular surfaces were obtained from a joint specimen of which experimentally determined kinematic data were available, and were used as input for the model. The ligaments were described by non-linear elastic line elements. The mechanical properties of the ligaments and the articular cartilage were derived from literature data. Parametric model evaluations showed that, relative to rigid articular contact, the incorporation of deformable contact did not alter the motion characteristics in a qualitative sense, and that the quantitative changes were small. Variation of the elasticity of the elastic layer revealed that decreasing the surface stiffness caused the ligaments to relax and, as a consequence, increased the joint laxity, particularly for axial rotation. The difference between the linear and the non-linear deformable contact in the knee model was very small for moderate loading conditions. The motion characteristics simulated with the knee model compared very well with the experiments. It is concluded that for simulation of the passive motion characteristics of the knee, the simplified description for contact of a thin linear elastic layer on a rigid foundation is a valid approach when aiming at the study of the motion characteristics for moderate loading conditions. With deformable contact in the knee model, geometric conformity between the surfaces can be modelled as opposed to rigid contact which assumed only point contact

    Detectability of Transiting Jupiters and Low-Mass Eclipsing Binaries in Sparsely Sampled Pan-STARRS-1 Survey Data

    Full text link
    We present detailed simulations of the Pan-STARRS-1 (PS1) multi-epoch, multi-band 3-pi Survey in order to assess its potential yield of transiting planets and eclipsing binaries. This survey differs from dedicated transit surveys in that it will cover the entire Northern sky but provide only sparsely sampled light curves. Since most eclipses would be detected at only a single epoch, the 3-pi Survey will be most sensitive to deep eclipses (> 0.10 mag) caused by Jupiters transiting M dwarfs and eclipsing stellar/substellar binaries. The survey will also provide parallaxes for the ~400,000 stars within 100 pc which will enable a volume-limited eclipse search, reducing the number of astrophysical false positives compared to previous magnitude-limited searches. Using the best available empirical data, we constructed a model of the extended solar neighborhood that includes stars, brown dwarfs, and a realistic binary population. We computed the yield of deeply eclipsing systems using both a semi-analytic and a full Monte Carlo approach. We examined statistical tests for detecting single-epoch eclipses in sparsely sampled data and assessed their vulnerability to false positives due to stellar variability. Assuming a short-period planet frequency of 0.5% for M dwarfs, our simulations predict that about a dozen transiting Jupiters around low-mass stars (M < 0.3 Msun) within 100 pc are potentially detectable in the PS1 3-pi Survey, along with ~300 low-mass eclipsing binaries (both component masses < 0.5 Msun), including ~10 eclipsing field brown dwarfs. Extensive follow-up observations would be required to characterize these candidate eclipsing systems, thereby enabling comprehensive tests of structural models and novel insights into the planetary architecture of low-mass stars.Comment: ApJ, in pres

    The Gliese 86 Binary System: A Warm Jupiter Formed in a Disk Truncated at ≈2 au

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/Gliese 86 is a nearby K dwarf hosting a giant planet on a ≈16 day orbit and an outer white dwarf companion on a ≈century-long orbit. In this study we combine radial velocity data (including new measurements spanning more than a decade) with high angular resolution imaging and absolute astrometry from Hipparcos and Gaia to measure the current orbits and masses of both companions. We then simulate the evolution of the Gl 86 system to constrain its primordial orbit when both stars were on the main sequence; the closest approach between the two stars was then about 9 au. Such a close separation limited the size of the protoplanetary disk of Gl 86 A and dynamically hindered the formation of the giant planet around it. Our measurements of Gl 86 B and Gl 86 Ab’s orbits reveal Gl 86 as a system in which giant planet formation took place in a disk truncated at ≈2 au. Such a disk would be just big enough to harbor the dust mass and total mass needed to assemble Gl 86 Ab’s core and envelope, assuming a high disk accretion rate and a low viscosity. Inefficient accretion of the disk onto Gl 86 Ab, however, would require a disk massive enough to approach the Toomre stability limit at its outer truncation radius. The orbital architecture of the Gl 86 system shows that giant planets can form even in severely truncated disks and provides an important benchmark for planet formation theory.Peer reviewe

    The Gliese 86 Binary System: A Warm Jupiter Formed in a Disk Truncated at approximate to 2 au

    Get PDF
    Gliese 86 is a nearby K dwarf hosting a giant planet on a ≈16 day orbit and an outer white dwarf companion on a ≈century-long orbit. In this study we combine radial velocity data (including new measurements spanning more than a decade) with high angular resolution imaging and absolute astrometry from Hipparcos and Gaia to measure the current orbits and masses of both companions. We then simulate the evolution of the Gl 86 system to constrain its primordial orbit when both stars were on the main sequence; the closest approach between the two stars was then about 9 au. Such a close separation limited the size of the protoplanetary disk of Gl 86 A and dynamically hindered the formation of the giant planet around it. Our measurements of Gl 86 B and Gl 86 Ab’s orbits reveal Gl 86 as a system in which giant planet formation took place in a disk truncated at ≈2 au. Such a disk would be just big enough to harbor the dust mass and total mass needed to assemble Gl 86 Ab’s core and envelope, assuming a high disk accretion rate and a low viscosity. Inefficient accretion of the disk onto Gl 86 Ab, however, would require a disk massive enough to approach the Toomre stability limit at its outer truncation radius. The orbital architecture of the Gl 86 system shows that giant planets can form even in severely truncated disks and provides an important benchmark for planet formation theory

    Synthesis of norbornane bisether antibiotics via silver-mediated alkylation

    Full text link
    A small series of norbornane bisether diguanidines have been synthesized and evaluated as antibacterial agents. The key transformation-bisalkylation of norbornane diol 6-was not successful using Williamson methodology but has been accomplished using Ag2O mediated alkylation. Further functionalization to incorporate two guanidinium groups gave rise to a series of structurally rigid cationic amphiphiles; several of which (16d, 16g and 16h) exhibited antibiotic activity. For example, compound 16d was active against a broad range of bacteria including Pseudomonas aeruginosa (MIC = 8 &micro;g/mL), Escherichia coli (MIC = 8 &micro;g/mL) and methicillin-resistant Staphylococcus aureus (MIC = 8 &micro;g/mL)

    Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory

    Get PDF
    Solar neutrinos from the decay of 8^8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to nu_e's, while the ES reaction also has a small sensitivity to nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC reaction rate is \phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6 /cm^2 s. Assuming no flavor transformation, the flux inferred from the ES reaction rate is \phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s. Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that there is a non-electron flavor active neutrino component in the solar flux. The total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x 10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter

    The Gliese 86 Binary System: A Warm Jupiter Formed in a Disk Truncated at ≈2 au

    Get PDF
    Gliese 86 is a nearby K dwarf hosting a giant planet on a ≍16 day orbit and an outer white dwarf companion on a ≍century-long orbit. In this study we combine radial velocity data (including new measurements spanning more than a decade) with high angular resolution imaging and absolute astrometry from Hipparcos and Gaia to measure the current orbits and masses of both companions. We then simulate the evolution of the Gl 86 system to constrain its primordial orbit when both stars were on the main sequence; the closest approach between the two stars was then about 9 au. Such a close separation limited the size of the protoplanetary disk of Gl 86 A and dynamically hindered the formation of the giant planet around it. Our measurements of Gl 86 B and Gl 86 Ab's orbits reveal Gl 86 as a system in which giant planet formation took place in a disk truncated at ≍2 au. Such a disk would be just big enough to harbor the dust mass and total mass needed to assemble Gl 86 Ab's core and envelope, assuming a high disk accretion rate and a low viscosity. Inefficient accretion of the disk onto Gl 86 Ab, however, would require a disk massive enough to approach the Toomre stability limit at its outer truncation radius. The orbital architecture of the Gl 86 system shows that giant planets can form even in severely truncated disks and provides an important benchmark for planet formation theory

    Partnering With Stakeholders to Inform the Co-Design of a Psychosocial Intervention for Prenatally Diagnosed Congenital Heart Disease

    Get PDF
    Input from diverse stakeholders is critical to the process of designing healthcare interventions. This study applied a novel mixed-methods, stakeholder-engaged approach to co-design a psychosocial intervention for mothers expecting a baby with congenital heart disease (CHD) and their partners to promote family wellbeing. The research team included parents and clinicians from 8 health systems. Participants were 41 diverse parents of children with prenatally diagnosed CHD across the 8 health systems. Qualitative data were collected through online crowdsourcing and quantitative data were collected through electronic surveys to inform intervention co-design. Phases of intervention co-design were: (I) Engage stakeholders in selection of intervention goals/outcomes; (II) Engage stakeholders in selection of intervention elements; (III) Obtain stakeholder input to increase intervention uptake/utility; (IV) Obtain stakeholder input on aspects of intervention design; and (V) Obtain stakeholder input on selection of outcome measures. Parent participants anticipated the resulting intervention, HEARTPrep, would be acceptable, useful, and feasible for parents expecting a baby with CHD. This model of intervention co-design could be used for the development of healthcare interventions across chronic diseases
    corecore