238 research outputs found

    Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths

    Get PDF
    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models

    How to Conduct Store Observations of Tobacco Marketing and Products

    Get PDF
    As tobacco companies continue to heavily market their products at the point of sale, tobacco control groups seek strategies to combat the negative effects of this marketing. Store observations, which have been widely used by researchers and practitioners alike, are an excellent surveillance tool. This article provides a guide for public health practitioners interested in working in the tobacco retail environment by detailing the steps involved in conducting store observations of tobacco marketing and products including 1) obtaining tobacco product retailer lists, 2) creating measures, 3) selecting a mode of data collection, 4) training data collectors, and 5) analyzing data. We also highlight issues that may arise while in the field and provide information on disseminating results of store observations, including the potential policy implications

    Acute effects of a thermogenic nutritional supplement on cycling time to exhaustion and muscular strength in college-aged men

    Get PDF
    This is the publisher's version, also available electronically from http://www.jissn.com/content/6/1/15.The purpose of the present study was to examine the acute effects of a thermogenic nutritional supplement containing caffeine, capsaicin, bioperine, and niacin on muscular strength and endurance performance. Methods Twenty recreationally-active men (mean ± SD age = 21.5 ± 1.4 years; stature = 178.2 ± 6.3 cm; mass = 76.5 ± 9.9 kg; VO2 PEAK = 3.05 ± 0.59 L/min-1) volunteered to participate in this randomized, double-blinded, placebo-controlled, cross-over study. All testing took place over a three-week period, with each of the 3 laboratory visits separated by 7 days (± 2 hours). During the initial visit, a graded exercise test was performed on a Lode Corival cycle ergometer (Lode, Groningen, Netherlands) until exhaustion (increase of 25 W every 2 min) to determine the maximum power output (W) at the VO2 PEAK (Parvo Medics TrueOne® 2400 Metabolic Measurement System, Sandy, Utah). In addition, one-repetition maximum (1-RM) strength was assessed using the bench press (BP) and leg press (LP) exercises. During visits 2 and 3, the subjects were asked to consume a capsule containing either the active supplement (200 mg caffeine, 33.34 mg capsaicin, 5 mg bioperine, and 20 mg niacin) or the placebo (175 mg of calcium carbonate, 160 mg of microcrystalline cellulose, 5 mg of stearic acid, and 5 mg of magnesium stearate in an identical capsule) 30 min prior to the testing. Testing included a time-to-exhaustion (TTE) ride on a cycle ergometer at 80% of the previously-determined power output at VO2 PEAK followed by 1-RM LP and BP tests. Results There were no differences (p > 0.05) between the active and placebo trials for BP, LP, or TTE. However, for the BP and LP scores, the baseline values (visit 1) were less than the values recorded during visits 2 and 3 (p ≤ 0.05). Conclusion Our findings indicated that the active supplement containing caffeine, capsaicin, bioperine, and niacin did not alter muscular strength or cycling endurance when compared to a placebo trial. The lack of increases in BP and LP strength and cycle ergometry endurance elicited by this supplement may have been related to the relatively small dose of caffeine, the high intensity of exercise, the untrained status of the participants, and/or the potential for caffeine and capsaicin to increase carbohydrate oxidation

    Can Recruiting Rankings Predict the Success of NCAA Division I Football Teams? An Examination of the Relationships among Rivals and Scouts Recruiting Rankings and Jeff Sagarin End-of-Season Ratings in Collegiate Football

    Get PDF
    This is the publisher's version, also available electronically from http://www.degruyter.com.The purpose of the present study was to examine the relationships among National Collegiate Athletic Association (NCAA) Division I football teams' 2002 recruiting rankings from the Rivals (RIV) and Scouts (SCO) recruiting services and the Jeff Sagarin end-of-season performance ratings from 2002–2006. The RIV and SCO recruiting services included rankings for 100 common NCAA Division I football teams for the 2002 recruiting season. Each recruiting service included a total point system rating (TOTPTS) and average star rating (AVESTAR). The Jeff Sagarin NCAA football ratings system was chosen as an indicator of the teams' performance. Pearson product moment correlation coefficients (R) and the corresponding predictive indices (R2) were used to examine whether the 2002 RIV & SCO TOTPTS and RIV & SCO AVESTAR ratings could predict the Jeff Sagarin end-of-season ratings and total number of wins for each football team for the 2002 through 2006 seasons. In addition, R and R2 values were computed to examine whether the 2002 Jeff Sagarin end-of-season ratings and total number of wins could predict the following season's recruiting rankings (2003 RIV & SCO TOTPTS and RIV & SCO AVESTAR). The results indicated that RIV & SCO TOTPTS and AVESTAR predicted up to 45% of the variances in the end-of-season ratings and total wins. Thus, other factors (besides recruiting rankings) must be contributing to the end-of-season ratings for the 100 NCAA football teams included in this study. In addition, up to 51% of the variance in RIV & SCO AVESTAR and TOTPTS was predicted by the previous year's end-of-season ratings or total wins, which suggests that more successful seasons tend to yield better subsequent recruiting classes

    Acute effects of a thermogenic nutritional supplement on cycling time to exhaustion and muscular strength in college-aged men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the present study was to examine the acute effects of a thermogenic nutritional supplement containing caffeine, capsaicin, bioperine, and niacin on muscular strength and endurance performance.</p> <p>Methods</p> <p>Twenty recreationally-active men (mean ± SD age = 21.5 ± 1.4 years; stature = 178.2 ± 6.3 cm; mass = 76.5 ± 9.9 kg; VO<sub>2 PEAK </sub>= 3.05 ± 0.59 L/min<sup>-1</sup>) volunteered to participate in this randomized, double-blinded, placebo-controlled, cross-over study. All testing took place over a three-week period, with each of the 3 laboratory visits separated by 7 days (± 2 hours). During the initial visit, a graded exercise test was performed on a Lode Corival cycle ergometer (Lode, Groningen, Netherlands) until exhaustion (increase of 25 W every 2 min) to determine the maximum power output (W) at the VO<sub>2 PEAK </sub>(Parvo Medics TrueOne<sup>® </sup>2400 Metabolic Measurement System, Sandy, Utah). In addition, one-repetition maximum (1-RM) strength was assessed using the bench press (BP) and leg press (LP) exercises. During visits 2 and 3, the subjects were asked to consume a capsule containing either the active supplement (200 mg caffeine, 33.34 mg capsaicin, 5 mg bioperine, and 20 mg niacin) or the placebo (175 mg of calcium carbonate, 160 mg of microcrystalline cellulose, 5 mg of stearic acid, and 5 mg of magnesium stearate in an identical capsule) 30 min prior to the testing. Testing included a time-to-exhaustion (TTE) ride on a cycle ergometer at 80% of the previously-determined power output at VO<sub>2 PEAK </sub>followed by 1-RM LP and BP tests.</p> <p>Results</p> <p>There were no differences (<it>p </it>> 0.05) between the active and placebo trials for BP, LP, or TTE. However, for the BP and LP scores, the baseline values (visit 1) were less than the values recorded during visits 2 and 3 (<it>p </it>≤ 0.05).</p> <p>Conclusion</p> <p>Our findings indicated that the active supplement containing caffeine, capsaicin, bioperine, and niacin did not alter muscular strength or cycling endurance when compared to a placebo trial. The lack of increases in BP and LP strength and cycle ergometry endurance elicited by this supplement may have been related to the relatively small dose of caffeine, the high intensity of exercise, the untrained status of the participants, and/or the potential for caffeine and capsaicin to increase carbohydrate oxidation.</p

    The effect of a dominant kinase-dead Csf1r mutation associated with adult-onset leukoencephalopathy on brain development and neuropathology

    Get PDF
    Amino acid substitutions in the kinase domain of the human CSF1R protein are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (Glu631Lys; E631K) in the mouse Csf1r locus. Previous analysis demonstrated that heterozygous mutation (Csf1rE631K/+) had a dominant inhibitory effect on CSF1R signaling in vitro and in vivo but did not recapitulate the pathology of the human disease. We speculated that leukoencephalopathy in humans requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles. Here we examine the impact of heterozygous Csf1r mutation on microglial phenotype, normal postnatal brain development, age-related changes in gene expression and on two distinct pathologies in which microgliosis is a prominent feature, prion disease and experimental autoimmune encephalitis (EAE). The heterozygous Csf1rE631K/+ mutation reduced microglial abundance and the expression of microglial-associated transcripts relative to wild-type controls at 12 weeks and 43 weeks of age but had no selective effect on homeostatic markers such as P2ry12. An epistatic interaction was demonstrated between Csf1rE631K/+ and Cxc3r1EGFP/+ genotypes leading to dysregulated microglial and neuronal gene expression in both hippocampus and striatum. Heterozygous Csf1rE631K mutation reduced the microgliosis associated with both diseases. There was no significant impact on disease severity or progression in prion disease. In EAE, induced expression of inflammation-associated transcripts in the hippocampus and striatum was suppressed in parallel with microglia-specific transcripts, but spinal cord demyelination was exacerbated. The results support a dominant-negative model of CSF1R-associated leukoencephalopathy and likely contributions of an environmental trigger and/or genetic background to neuropathology

    Toward a predictive understanding of Earth’s microbiomes to address 21st century challenges

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mBio 7 (2016): e00714-16, doi:10.1128/mBio.00714-16.Microorganisms have shaped our planet and its inhabitants for over 3.5 billion years. Humankind has had a profound influence on the biosphere, manifested as global climate and land use changes, and extensive urbanization in response to a growing population. The challenges we face to supply food, energy, and clean water while maintaining and improving the health of our population and ecosystems are significant. Given the extensive influence of microorganisms across our biosphere, we propose that a coordinated, cross-disciplinary effort is required to understand, predict, and harness microbiome function. From the parallelization of gene function testing to precision manipulation of genes, communities, and model ecosystems and development of novel analytical and simulation approaches, we outline strategies to move microbiome research into an era of causality. These efforts will improve prediction of ecosystem response and enable the development of new, responsible, microbiome-based solutions to significant challenges of our time.E.L.B. is supported by the Genomes-to-Watersheds Subsurface Biogeochemical Research Scientific Focus Area, and T.R.N. is supported by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov) Scientific Focus Area, funded by the U.S. Department of Energy (US DOE), Office of Science, Office of Biological and Environmental Research under contract no. DE-AC02- 05CH11231 to Lawrence Berkeley National Laboratory (LBNL). M.E.M. is also supported by the US DOE, Office of Science, Office of Biological and Environmental Research under contract no. DE-AC02-05CH11231. Z.G.C. is supported by National Science Foundation Integrative Organismal Systems grant #1355085, and by US DOE, Office of Biological and Environmental Research grant # DE-SC0008182 ER65389 from the Terrestrial Ecosystem Science Program. M.J.B. is supported by R01 DK 090989 from the NIH. T.J.D. is supported by the US DOE Office of Science’s Great Lakes Bioenergy Research Center, grant DE-FC02- 07ER64494. J.L.G. is supported by Alfred P. Sloan Foundation G 2-15-14023. R.K. is supported by grants from the NSF (DBI-1565057) and NIH (U01AI24316, U19AI113048, P01DK078669, 1U54DE023789, U01HG006537). K.S.P. is supported by grants from the NSF DMS- 1069303 and the Gordon & Betty Moore Foundation (#3300)

    Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming

    Get PDF
    Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long-term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long-term warming, we sampled soils from 13- and 28-year-old soil warming experiments in different seasons. We performed short-term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally-induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C-cycling processes to decadal warming. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long-term warming effects on these soils

    Fire and biodiversity in the Anthropocene

    Get PDF
    The workshop leading to this paper was funded by the Centre Tecnològic Forestal de Catalunya and the ARC Centre of Excellence for Environmental Decisions. L.T.K. was supported by a Victorian Postdoctoral Research Fellowship (Victorian Government), a Centenary Fellowship (University of Melbourne), and an Australian Research Council Linkage Project Grant (LP150100765). A.R. was supported by the Xunta de Galicia (Postdoctoral Fellowship ED481B2016/084-0) and the Foundation for Science and Technology under the FirESmart project (PCIF/MOG/0083/2017). A.L.S. was supported by a Marie Skłodowska-Curie Individual Fellowship (746191) under the European Union Horizon 2020 Programme for Research and Innovation. L.R. was supported by the Australian Government’s National Environmental Science Program through the Threatened Species Recovery Hub. L.B. was partially supported by the Spanish Government through the INMODES (CGL2014-59742-C2-2-R) and the ERANET-SUMFORESTS project FutureBioEcon (PCIN-2017-052). This research was supported in part by the U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.BACKGROUND Fire has shaped the diversity of life on Earth for millions of years. Variation in fire regimes continues to be a source of biodiversity across the globe, and many plants, animals, and ecosystems depend on particular temporal and spatial patterns of fire. Although people have been using fire to modify environments for millennia, the combined effects of human activities are now changing patterns of fire at a global scale—to the detriment of human society, biodiversity, and ecosystems. These changes pose a global challenge for understanding how to sustain biodiversity in a new era of fire. We synthesize how changes in fire activity are threatening species with extinction across the globe, highlight forward-looking methods for predicting the combined effects of human drivers and fire on biodiversity, and foreshadow emerging actions and strategies that could revolutionize how society manages fire for biodiversity in the Anthropocene. ADVANCES Our synthesis shows that interactions with anthropogenic drivers such as global climate change, land use, and biotic invasions are transforming fire activity and its impacts on biodiversity. More than 4400 terrestrial and freshwater species from a wide range of taxa and habitats face threats associated with modified fire regimes. Many species are threatened by an increase in fire frequency or intensity, but exclusion of fire in ecosystems that need it can also be harmful. The prominent role of human activity in shaping global ecosystems is the hallmark of the Anthropocene and sets the context in which models and actions must be developed. Advances in predictive modeling deliver new opportunities to couple fire and biodiversity data and to link them with forecasts of multiple drivers including drought, invasive plants, and urban growth. Making these connections also provides an opportunity for new actions that could revolutionize how society manages fire. Emerging actions include reintroduction of mammals that reduce fuels, green fire breaks comprising low-flammability plants, strategically letting wildfires burn under the right conditions, managed evolution of populations aided by new genomics tools, and deployment of rapid response teams to protect biodiversity assets. Indigenous fire stewardship and reinstatement of cultural burning in a modern context will enhance biodiversity and human well-being in many regions of the world. At the same time, international efforts to reduce greenhouse gas emissions are crucial to reduce the risk of extreme fire events that contribute to declines in biodiversity. OUTLOOK Conservation of Earth’s biological diversity will be achieved only by recognition of and response to the critical role of fire in shaping ecosystems. Global changes in fire regimes will continue to amplify interactions between anthropogenic drivers and create difficult trade-offs between environmental and social objectives. Scientific input will be crucial for navigating major decisions about novel and changing ecosystems. Strategic collection of data on fire, biodiversity, and socioeconomic variables will be essential for developing models to capture the feedbacks, tipping points, and regime shifts characteristic of the Anthropocene. New partnerships are also needed to meet the challenges ahead. At the local and regional scale, getting more of the “right” type of fire in landscapes that need it requires new alliances and networks to build and apply knowledge. At the national and global scale, biodiversity conservation will benefit from greater integration of fire into national biodiversity strategies and action plans and in the implementation of international agreements and initiatives such as the UN Convention on Biological Diversity. Placing the increasingly important role of people at the forefront of efforts to understand and adapt to changes in fire regimes is central to these endeavors.PostprintPeer reviewe
    corecore