123 research outputs found

    Marriage and virginity according to St. John Chrysostom

    Get PDF

    A Global Repository for Planet-Sized Experiments and Observations

    Get PDF
    Working across U.S. federal agencies, international agencies, and multiple worldwide data centers, and spanning seven international network organizations, the Earth System Grid Federation (ESGF) allows users to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP)—output used by the Intergovernmental Panel on Climate Change assessment reports. Data served by ESGF not only include model output (i.e., CMIP simulation runs) but also include observational data from satellites and instruments, reanalyses, and generated images. Metadata summarize basic information about the data for fast and easy data discovery.This work was supported by the U.S. Department of Energy Office of Science/Office of Biological and Environmental Research under Contract DE-AC52-07NA27344 at Lawrence Livermore National Laboratory. VB is supported by the Cooperative Institute for Climate Science, Princeton University, under Award NA08OAR4320752 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Part of this work was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government. Part of this activity was performed on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Part of this activity was performed on behalf of the Goddard Space Flight Center, under a contract with NASA. This work was supported by ANR Convergence project (Grant Agreement ANR-13-MONU-0008). This work was supported by FP7 IS-ENES2 project (Grant Agreement 312979)

    The path to a more accessible and inclusive future of meetings in astronomy

    Get PDF
    Science Communication and Societ

    Estimated Ultraviolet Radiation Doses in Wetlands in Six National Parks

    Get PDF
    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/ Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m-2 (range of 3.4–32.1 W-h m-2). The mean dose was lowest in Acadia (13.7 W-h m-2) and highest in Rocky (24.4 W-h m-2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 µW cm-2 (range 21.4–194.7 µW cm)2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L-1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms

    A global ensemble of ocean wave climate statistics from contemporary wave reanalysis and hindcasts

    Get PDF
    There are numerous global ocean wave reanalysis and hindcast products currently being distributed and used across different scientific fields. However, there is not a consistent dataset that can sample across all existing products based on a standardized framework. Here, we present and describe the first coordinated multi-product ensemble of present-day global wave fields available to date. This dataset, produced through the Coordinated Ocean Wave Climate Project (COWCLIP) phase 2, includes general and extreme statistics of significant wave height (Hs), mean wave period (Tm) and mean wave direction (θm) computed across 1980–2014, at different frequency resolutions (monthly, seasonally, and annually). This coordinated global ensemble has been derived from fourteen state-of-the-science global wave products obtained from different atmospheric reanalysis forcing and downscaling methods. This data set has been processed, under a specific framework for consistency and quality, following standard Data Reference Syntax, Directory Structures and Metadata specifications. This new comprehensive dataset provides support to future broad-scale analysis of historical wave climatology and variability as well as coastal risk and vulnerability assessments across offshore and coastal engineering applications

    Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble

    Get PDF
    Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30–40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1–2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses.publishedVersio

    Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble

    Get PDF
    Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30-40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1-2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses

    Implementation of FAIR principles in the IPCC: the WGI AR6 Atlas repository

    Get PDF
    The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) has adopted the FAIR Guiding Principles. We present the Atlas chapter of Working Group I (WGI) as a test case. We describe the application of the FAIR principles in the Atlas, the challenges faced during its implementation, and those that remain for the future. We introduce the open source repository resulting from this process, including coding (e.g., annotated Jupyter notebooks), data provenance, and some aggregated datasets used in some figures in the Atlas chapter and its interactive companion (the Interactive Atlas), open to scrutiny by the scientific community and the general public. We describe the informal pilot review conducted on this repository to gather recommendations that led to significant improvements. Finally, a working example illustrates the re-use of the repository resources to produce customized regional information, extending the Interactive Atlas products and running the code interactively in a web browser using Jupyter notebooks.Peer reviewe

    Robustness and uncertainties in global multivariate wind-wave climate projections

    Get PDF
    Understanding climate-driven impacts on the multivariate global wind-wave climate is paramount to effective offshore/coastal climate adaptation planning. However, the use of single-method ensembles and variations arising from different methodologies has resulted in unquantified uncertainty amongst existing global wave climate projections. Here, assessing the first coherent, community-driven, multi-method ensemble of global wave climate projections, we demonstrate widespread ocean regions with robust changes in annual mean significant wave height and mean wave period of 5–15% and shifts in mean wave direction of 5–15°, under a high-emission scenario. Approximately 50% of the world’s coastline is at risk from wave climate change, with ~40% revealing robust changes in at least two variables. Furthermore, we find that uncertainty in current projections is dominated by climate model-driven uncertainty, and that single-method modelling studies are unable to capture up to ~50% of the total associated uncertainty
    • …
    corecore