15 research outputs found

    Adjuvant drug therapy to overcome antibiotic resistances : drug target evaluation in multidrug resistant pathogens

    Get PDF
    Antimicrobial resistance is one of the biggest threats to human health globally. Alarmingly, multidrug resistant, extensively drug resistant and even pan drug resistant pathogens have emerged worldwide and constantly spread in healthcare centers. These bacteria are resistant to most, if not all currently available antibiotics. If no actions are taken to tackle the antimicrobial resistance issue there is a high risk to enter into a post-antibiotic era, where standard surgeries provide a high risk to the patient and people died from simple infections due to a lack of treatment options. In the last decades, many big pharmaceutical companies pulled away from antibiotic discovery due to a lower expectation of profits compared to other therapeutic areas, leading to empty pipelines and a lack of innovation in the antibiotic field. To overcome this development gap, novel innovative therapeutic strategies may be needed. Adjuvant drug therapy to overcome antibiotic resistances is one of these innovative approaches. This therapy combines an antibiotic with an adjuvant drug, which specifically switches off the resistance mechanisms directed against the antibiotic. Such approach can potentially expand the life time of antibiotics by switching off an already developed resistance path or by delaying the onset of resistance. This work aimed to investigate the adjuvant therapy approach in Acinetobacter baumannii and Mycobacterium tuberculosis, which are two pathogens of great importance with constantly increasing drug resistance rates

    Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates

    Get PDF
    Nosocomial infections with; Acinetobacter baumannii; are a global problem in intensive care units with high mortality rates. Increasing resistance to first- and second-line antibiotics has forced the use of colistin as last-resort treatment, and increasing development of colistin resistance in; A. baumannii; has been reported. We evaluated the transcriptional regulator PmrA as potential drug target to restore colistin efficacy in; A. baumannii; Deletion of; pmrA; restored colistin susceptibility in 10 of the 12 extensively drug-resistant; A. baumannii; clinical isolates studied, indicating the importance of PmrA in the drug resistance phenotype. However, two strains remained highly resistant, indicating that PmrA-mediated overexpression of the phosphoethanolamine (PetN) transferase PmrC is not the exclusive colistin resistance mechanism in; A. baumannii; A detailed genetic characterization revealed a new colistin resistance mechanism mediated by genetic integration of the insertion element IS; AbaI; upstream of the PmrC homolog EptA (93% identity), leading to its overexpression. We found that; eptA; was ubiquitously present in clinical strains belonging to the international clone 2, and IS; AbaI; integration upstream of; eptA; was required to mediate the colistin-resistant phenotype. In addition, we found a duplicated IS; AbaI; -; eptA; cassette in one isolate, indicating that this colistin resistance determinant may be embedded in a mobile genetic element. Our data disprove PmrA as a drug target for adjuvant therapy but highlight the importance of PetN transferase-mediated colistin resistance in clinical strains. We suggest that direct targeting of the homologous PetN transferases PmrC/EptA may have the potential to overcome colistin resistance in; A. baumannii; IMPORTANCE; The discovery of antibiotics revolutionized modern medicine and enabled us to cure previously deadly bacterial infections. However, a progressive increase in antibiotic resistance rates is a major and global threat for our health care system. Colistin represents one of our last-resort antibiotics that is still active against most Gram-negative bacterial pathogens, but increasing resistance is reported worldwide, in particular due to the plasmid-encoded protein MCR-1 present in pathogens such as; Escherichia coli; and; Klebsiella pneumoniae; Here, we showed that colistin resistance in; A. baumannii; , a top-priority pathogen causing deadly nosocomial infections, is mediated through different avenues that result in increased activity of homologous phosphoethanolamine (PetN) transferases. Considering that MCR-1 is also a PetN transferase, our findings indicate that PetN transferases might be the Achilles heel of superbugs and that direct targeting of them may have the potential to preserve the activity of polymyxin antibiotics

    Klebsiella pneumoniae OmpR facilitates lung infection through transcriptional regulation of key virulence factors

    Get PDF
    Bacteria must adapt to the stresses of specific environmental conditions to survive. This adaptation is often achieved by altering gene expression through two-component regulatory systems (TCSs). In Gram-negative bacteria, the response to environmental changes in osmolarity and pH is primarily mediated by the EnvZ/OmpR TCS. Although the functioning of EnvZ/OmpR has been well characterized in Escherichia coli, Salmonella enterica, and the Yersinia genus, the importance of EnvZ/OmpR TCS in the opportunistic human pathogen Klebsiella pneumoniae has been limitedly studied. Here, we investigated the importance of EnvZ/OmpR in K. pneumoniae for fitness, gene regulation, virulence, and infection. Through the generation of a markerless ompR-deletion mutant, we show that overall fitness of K. pneumoniae is not impacted in vitro. Using dual RNA sequencing of K. pneumoniae co-incubated with human lung epithelial cells, we demonstrate that the K. pneumoniae OmpR regulon includes important virulence factors but shows otherwise limited overlap with the regulons of other Gram-negative bacteria. In addition, we show that deletion of ompR in K. pneumoniae leads to a stronger antibacterial transcriptional response in human lung epithelial cells. Lastly, we show that OmpR is crucial for K. pneumoniae virulence and infection through a murine lung infection model. As the adaptation of commensal bacteria to specific niches is mediated by TCSs, we show that EnvZ/OmpR plays a crucial role in successful lung infection, as well as in virulence. These results suggest that OmpR is an interesting target for anti-virulence drug discovery programs.</p

    The role of OmpR in bile tolerance and pathogenesis of adherent-invasive Escherichia coli

    Get PDF
    International audienceGut microbiota dysbiosis toward adherent-invasive Escherichia coli (AIEC) plays an important role in Crohn’s disease (CD). The OmpR transcriptional regulator is required for the AIEC LF82 prototype strain to adhere and invade intestinal epithelial cells. In this study, we explored the role of OmpR in AIEC pathogenesis using a panel of eight Escherichia coli strains isolated from CD patients and identified as AIEC. The deletion of ompR together with the implementation of two cell-based assays revealed that the role of OmpR in adhesion in vitro was not conserved in AIEC clinical strains. Nevertheless, we showed that OmpR was required for robust gut colonization of transgenic mice expressing human CEACAM receptors, suggesting that OmpR is involved in alternative virulence mechanisms in AIEC strains. We found that deletion of ompR compromised the ability of AIEC strains to cope with the stress induced by bile salts, which may be key for AIEC pathogenesis. More specifically, we demonstrated that OmpR was involved in a tolerance mechanism toward sodium deoxycholate (DOC), one of bile salts main component. We showed that the misregulation of OmpF or the loss of outer membrane integrity are not the drivers of OmpR-mediated DOC tolerance, suggesting that OmpR regulates a specific mechanism enhancing AIEC survival in the presence of DOC. In conclusion, the newly discovered role of OmpR in AIEC bile tolerance suggests that OmpR inhibition would interfere with different aspects of AIEC virulence arsenal and could be an alternative strategy for CD-treatment

    A novel genome editing platform for drug resistant Acinetobacter baumannii revealed an AdeR-unrelated tigecycline resistance mechanism

    No full text
    Infections with the Gram-negative coccobacillus Acinetobacter baumannii are a major threat in hospital settings. The progressing emergence of multidrug resistant clinical strains significantly reduces the treatment options for clinicians to fight A. baumannii infections. The current lack of robust methods to genetically manipulate drug resistant A. baumannii isolates impedes research on resistance and virulence mechanisms in clinically relevant strains. In this study we developed a highly efficient and versatile genome editing platform enabling the markerless modification of the genome of A. baumannii clinical and laboratory strains, regardless of their resistance profile.We applied this method for the deletion of AdeR, a transcription factor that regulates the expression of the AdeABC efflux pump in tigecycline resistant A. baumannii, to evaluate its function as a putative drug target. Loss of adeR reduced the MIC90 of tigecycline from 25 ÎŒg/ml in the parental strains to 3.1 ÎŒg/ml in the ΔadeR mutants indicating its importance in the drug resistant phenotype. However, 60% of the clinical isolates remained non-susceptible to tigecycline after adeR deletion. Evolution of artificial tigecycline resistance in two strains followed by whole genome sequencing revealed loss of function mutations in trm, suggesting its role in an alternative AdeABC-independent tigecycline resistance mechanism. This finding was strengthened by the confirmation of trm disruption in the majority of the tigecycline resistant clinical isolates. This study highlights the development and application of a powerful genome editing platform for A. baumannii enabling future research on drug resistance and virulence pathways in clinical relevant strains

    Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)‑Xylose into Value-Added Chemicals

    No full text
    A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks

    Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strainsResearch in context

    Get PDF
    Background: Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown. Methods: We developed a versatile method for genetic engineering in multi-drug resistant (MDR) bacteria, and used this method to delete tolC and specific antibiotic-resistance genes in 18 representative MDR clinical E. coli isolates. We determined efflux activity and minimal inhibitory concentrations for a diverse set of clinically relevant antibiotics in these mutants. We also deleted oprM in MDR P. aeruginosa strains and determined the impact on antibiotic susceptibility. Findings: tolC deletion abolished detectable efflux activity in 15 out of 18 tested E. coli strains, and modulated antibiotic susceptibility in many strains. However, all mutant strains retained MDR status, primarily because of other, antibiotic-specific resistance genes. Deletion of oprM altered antibiotic susceptibility in a fraction of clinical P. aeruginosa isolates. Interpretation: Efflux modulates antibiotic resistance in clinical MDR isolates of E. coli and P. aeruginosa. However, when other antimicrobial-resistance mechanisms are present, inhibition of MDR efflux pumps alone is often not sufficient to restore full susceptibility even for antibiotics with a dramatic impact of efflux in laboratory strains. We propose that development of novel antibiotics should include target validation in clinical MDR isolates. Fund: Innovative Medicines Initiative of European Union and EFPIA, Schweizerischer Nationalfonds, Swiss National Research Program 72, EU Marie SkƂodowska-Curie program. The funders played no role in design, data collection, data analysis, interpretation, writing of the report, and in the decision to submit the paper for publication. Keywords: Antibiotic resistance, Efflux, Clinical strains, Genetic engineerin

    Total Synthesis and Structure Assignment of the Relacidine Lipopeptide Antibiotics and Preparation of Analogues with Enhanced Stability

    No full text
    The unabated rise of antibiotic resistance has raised the specter of a post-antibiotic era and underscored the importance of developing new classes of antibiotics. The relacidines are a recently discovered group of nonribosomal lipopeptide antibiotics that show promising activity against Gram-negative pathogens and share structural similarities with brevicidine and laterocidine. While the first reports of the relacidines indicated that they possess a C-terminal five-amino acid macrolactone, an N-terminal lipid tail, and an overall positive charge, no stereochemical configuration was assigned, thereby precluding a full structure determination. To address this issue, we here report a bioinformatics guided total synthesis of relacidine A and B and show that the authentic natural products match our predicted and synthesized structures. Following on this, we also synthesized an analogue of relacidine A wherein the ester linkage of the macrolactone was replaced by the corresponding amide. This analogue was found to possess enhanced hydrolytic stability while maintaining the antibacterial activity of the natural product in both in vitro and in vivo efficacy studies

    Data from: Reversion of antibiotic resistance in Mycobacterium tuberculosis by spiroisoxazoline SMARt-420

    No full text
    Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis, circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide

    Reversion of antibiotic resistance in Mycobacterium tuberculosis by spiroisoxazoline SMARt-420

    No full text
    Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis, circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide
    corecore