1,409 research outputs found
Identifying critical residues in protein folding: Insights from phi-value and Pfold analysis
We apply a simulational proxy of the phi-value analysis and perform extensive
mutagenesis experiments to identify the nucleating residues in the folding
reactions of two small lattice Go polymers with different native geometries.
These results are compared with those obtained from an accurate analysis based
on the reaction coordinate folding probability Pfold, and on structural
clustering methods. For both protein models, the transition state ensemble is
rather heterogeneous and splits-up into structurally different populations. For
the more complex geometry the identified subpopulations are actually
structurally disjoint. For the less complex native geometry we found a broad
transition state with microscopic heterogeneity. For both geometries, the
identification of the folding nucleus via the Pfold analysis agrees with the
identification of the folding nucleus carried out with the phi-value analysis.
For the most complex geometry, however, the apllied methodologies give more
consistent results than for the more local geometry. The study of the
transition state' structure reveals that the nucleus residues are not
necessarily fully native in the transition state. Indeed, it is only for the
more complex geometry that two of the five critical residues show a
considerably high probability of having all its native bonds formed in the
transition state. Therefore, one concludes that in general the phi-value
correlates with the acceleration/deceleration of folding induced by mutation,
rather than with the degree of nativeness of the transition state, and that the
traditional interpretation of phi-values may provide a more realistic picture
of the structure of the transition state only for more complex native
geometries.Comment: Submitted for publication with minor changes (abstract & higher
resolution figures
The folding of knotted proteins: insights from lattice simulations
We carry out systematic Monte Carlo simulations of Go lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system
Novel glassy behavior in a ferromagnetic p-spin model
Recent work has suggested the existence of glassy behavior in a ferromagnetic
model with a four-spin interaction. Motivated by these findings, we have
studied the dynamics of this model using Monte Carlo simulations with
particular attention being paid to two-time quantities. We find that the system
shares many features in common with glass forming liquids. In particular, the
model exhibits: (i) a very long-lived metastable state, (ii) autocorrelation
functions that show stretched exponential relaxation, (iii) a non-equilibrium
timescale that appears to diverge at a well defined temperature, and (iv) low
temperature aging behaviour characteristic of glasses.Comment: 6 pages, 5 figure
Ohta-Jasnow-Kawasaki Approximation for Nonconserved Coarsening under Shear
We analytically study coarsening dynamics in a system with nonconserved
scalar order parameter, when a uniform time-independent shear flow is present.
We use an anisotropic version of the Ohta-Jasnow-Kawasaki approximation to
calculate the growth exponents in two and three dimensions: for d=3 the
exponents we find are the same as expected on the basis of simple scaling
arguments, that is 3/2 in the flow direction and 1/2 in all the other
directions, while for d=2 we find an unusual behavior, in that the domains
experience an unlimited narrowing for very large times and a nontrivial
dynamical scaling appears. In addition, we consider the case where an
oscillatory shear is applied to a two-dimensional system, finding in this case
a standard t^1/2 growth, modulated by periodic oscillations. We support our
two-dimensional results by means of numerical simulations and we propose to
test our predictions by experiments on twisted nematic liquid crystals.Comment: 25 RevTeX pages, 7 EPS figures. To be published in Phys. Rev.
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Nucleation phenomena in protein folding: The modulating role of protein sequence
For the vast majority of naturally occurring, small, single domain proteins
folding is often described as a two-state process that lacks detectable
intermediates. This observation has often been rationalized on the basis of a
nucleation mechanism for protein folding whose basic premise is the idea that
after completion of a specific set of contacts forming the so-called folding
nucleus the native state is achieved promptly. Here we propose a methodology to
identify folding nuclei in small lattice polymers and apply it to the study of
protein molecules with chain length N=48. To investigate the extent to which
protein topology is a robust determinant of the nucleation mechanism we compare
the nucleation scenario of a native-centric model with that of a sequence
specific model sharing the same native fold. To evaluate the impact of the
sequence's finner details in the nucleation mechanism we consider the folding
of two non- homologous sequences. We conclude that in a sequence-specific model
the folding nucleus is, to some extent, formed by the most stable contacts in
the protein and that the less stable linkages in the folding nucleus are solely
determined by the fold's topology. We have also found that independently of
protein sequence the folding nucleus performs the same `topological' function.
This unifying feature of the nucleation mechanism results from the residues
forming the folding nucleus being distributed along the protein chain in a
similar and well-defined manner that is determined by the fold's topological
features.Comment: 10 Figures. J. Physics: Condensed Matter (to appear
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts
We outline the scientific motivation behind a search for gravitational waves
associated with short gamma ray bursts detected by the InterPlanetary Network
(IPN) during LIGO's fifth science run and Virgo's first science run. The IPN
localisation of short gamma ray bursts is limited to extended error boxes of
different shapes and sizes and a search on these error boxes poses a series of
challenges for data analysis. We will discuss these challenges and outline the
methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on
Gravitational Waves, July 2011, Cardiff, U
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
- …
