2,360 research outputs found

    GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations

    Get PDF
    Gamma (30–80 Hz) oscillations occur in mammalian electroencephalogram in a manner that indicates cognitive relevance. In vitro models of gamma oscillations demonstrate two forms of oscillation: one occurring transiently and driven by discrete afferent input and the second occurring persistently in response to activation of excitatory metabotropic receptors. The mechanism underlying persistent gamma oscillations has been suggested to involve gap-junctional communication between axons of principal neurons, but the precise relationship between this neuronal activity and the gamma oscillation has remained elusive. Here we demonstrate that gamma oscillations coexist with high-frequency oscillations (>90 Hz). High-frequency oscillations can be generated in the axonal plexus even when it is physically isolated from pyramidal cell bodies. They were enhanced in networks by nonsomatic -aminobutyric acid type A (GABAA) receptor activation, were modulated by perisomatic GABAA receptor-mediated synaptic input to principal cells, and provided the phasic input to interneurons required to generate persistent gamma-frequency oscillations. The data suggest that high-frequency oscillations occurred as a consequence of random activity within the axonal plexus. Interneurons provide a mechanism by which this random activity is both amplified and organized into a coherent network rhythm

    Dynamically-Coupled Oscillators -- Cooperative Behavior via Dynamical Interaction --

    Full text link
    We propose a theoretical framework to study the cooperative behavior of dynamically coupled oscillators (DCOs) that possess dynamical interactions. Then, to understand synchronization phenomena in networks of interneurons which possess inhibitory interactions, we propose a DCO model with dynamics of interactions that tend to cause 180-degree phase lags. Employing an approach developed here, we demonstrate that although our model displays synchronization at high frequencies, it does not exhibit synchronization at low frequencies because this dynamical interaction does not cause a phase lag sufficiently large to cancel the effect of the inhibition. We interpret the disappearance of synchronization in our model with decreasing frequency as describing the breakdown of synchronization in the interneuron network of the CA1 area below the critical frequency of 20 Hz.Comment: 10 pages, 3 figure

    A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro

    Get PDF
    Basic cellular and network mechanisms underlying gamma frequency oscillations (30–80 Hz) have been well characterized in the hippocampus and associated structures. In these regions, gamma rhythms are seen as an emergent property of networks of principal cells and fast-spiking interneurons. In contrast, in the neocortex a number of elegant studies have shown that specific types of principal neuron exist that are capable of generating powerful gamma frequency outputs on the basis of their intrinsic conductances alone. These fast rhythmic bursting (FRB) neurons (sometimes referred to as "chattering" cells) are activated by sensory stimuli and generate multiple action potentials per gamma period. Here, we demonstrate that FRB neurons may function by providing a large-scale input to an axon plexus consisting of gap-junctionally connected axons from both FRB neurons and their anatomically similar counterparts regular spiking neurons. The resulting network gamma oscillation shares all of the properties of gamma oscillations generated in the hippocampus but with the additional critical dependence on multiple spiking in FRB cells

    Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation

    Get PDF
    Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance

    Роль дизъюнктивных нарушений в распределении, формировании и разрушении залежей газа на Малохетском валу (северо-восток Западно-Сибирской низменности)

    Get PDF
    High reliable diode laser pump modules are essential for free-space optical telecommunications. Besides the reliability, low mass and small dimensions, radiation-hardness and low power-consumption are requirements to be met for space applications. A diode laser module suited for pumping Nd:YAG lasers for optical intersatellite links has been developed. The module consists of two diode laser bars overlaid by a polarization beam splitter to increase the system's reliability. Each diode laser bar consists of six emitters. If the integrated photodiode detects the failure of one bar, the second, substitute bar is switched on and can fully sustain all module functions. To equalize the beam quality of the diode laser bar, a pair of micro step mirrors is used for each bar. The laser beam is focussed on the entrance of a d=200 µm, NA=0.22 fiber. Both the coupling efficiency and the accuracy of the mounting of the diode laser components have been analyzed by raytracing. Passive cooling has been chosen because liquid chilling systems are unsuitable for space applications. To evaluate the effects of different heat sink materials and to predict the temperature drop over the module, a 3D finite element analysis for the steady-state temperature distribution of the module has been performed. The optical output power of the module described above amounts to 2,8 W with one bar operating derated to 0.5x maximum current, and the whole unit fits in a housing of 78 x 50 x 24 mm. Further developments will lead to a more compact design and a smaller fiber diameter

    Экспериментальные исследования периодического способа питания забоя скважин дробью

    Get PDF
    High power diode lasers have become an established source for numerous direct applications like metal hardening and polymer welding due to their high efficiency, small size, low cost and high reliability. These laser sources are also used for efficient pumping of solid state lasers as Nd:YAG lasers. To increase the output power of diode lasers up to several kilowatts, the emitters are scaled laterally by forming a diode laser bar and vertically by forming a diode laser stack. For most applications like hardening and illumination, though, the undefined far field distribution of most commercially available high power diode laser stacks states a major drawback of these devices. As single emitters and bars can fail during their lifetime, the near field distribution does not remain constant. To overcome these problems, the intensity distribution can be homogenized by a waveguide or by microoptic devices. The waveguide segments the far field distribution by several total internal reflections, and these segments are overlaid at the waveguide's exit surface. By the microoptic device, the near field is divided into beamlets which are overlaid by a field lens. Both approaches are presented, and realized systems are described

    Стабилизация излучения бетатрона

    Get PDF

    Observations of Mira stars with the IOTA/FLUOR interferometer and comparison with Mira star models

    Full text link
    We present K'-band observations of five Mira stars with the IOTA interferometer. The interferograms were obtained with the FLUOR fiber optics beam combiner, which provides high-accuracy visibility measurements in spite of time-variable atmospheric conditions. For the M-type Miras X Oph, R Aql, RU Her, R Ser, and the C-type Mira V CrB we derived the uniform-disk diameters 11.7mas, 10.9mas, 8.4mas, 8.1mas, and 7.9mas (+/- 0.3mas), respectively. Simultaneous photometric observations yielded the bolometric fluxes. The derived angular Rosseland radii and the bolometric fluxes allowed the determination of effective temperatures. For instance, the effective temperature of R Aql was determined to be 2970 +/- 110 K. A linear Rosseland radius for R Aql of (250 +100/-60) Rsun was derived from the angular Rosseland radius of 5.5mas +/- 0.2mas and the HIPPARCOS parallax of 4.73mas +/- 1.19mas. The observations were compared with theoretical Mira star models of Bessel et al. (1996) and Hofmann et al. (1998). The effective temperatures of the M-type Miras and the linear radius of R Aql indicate fundamental mode pulsation.Comment: 12 pages, 4 postscript figure
    corecore