19,187 research outputs found

    The Anticorrelated Nature of the Primary and Secondary Eclipse Timing Variations for the Kepler Contact Binaries

    Get PDF
    We report on a study of eclipse timing variations in contact binary systems, using long-cadence lightcurves in the Kepler archive. As a first step, 'observed minus calculated' (O-C) curves were produced for both the primary and secondary eclipses of some 2000 Kepler binaries. We find ~390 short-period binaries with O-C curves that exhibit (i) random-walk like variations or quasi-periodicities, with typical amplitudes of +/- 200-300 seconds, and (ii) anticorrelations between the primary and secondary eclipse timing variations. We present a detailed analysis and results for 32 of these binaries with orbital periods in the range of 0.35 +/- 0.05 days. The anticorrelations observed in their O-C curves cannot be explained by a model involving mass transfer, which among other things requires implausibly high rates of ~0.01 M_sun per year. We show that the anticorrelated behavior, the amplitude of the O-C delays, and the overall random-walk like behavior can be explained by the presence of a starspot that is continuously visible around the orbit and slowly changes its longitude on timescales of weeks to months. The quasi-periods of ~50-200 days observed in the O-C curves suggest values for k, the coefficient of the latitude dependence of the stellar differential rotation, of ~0.003-0.013.Comment: Published in The Astrophysical Journal, 2013, Vol. 774, p.81; 14 pages, 12 figures, and 2 table

    Involutivity of integrals for sine-Gordon, modified KdV and potential KdV maps

    Full text link
    Closed form expressions in terms of multi-sums of products have been given in \cite{Tranclosedform, KRQ} of integrals of sine-Gordon, modified Korteweg-de Vries and potential Korteweg-de Vries maps obtained as so-called (p,1)(p,-1)-traveling wave reductions of the corresponding partial difference equations. We prove the involutivity of these integrals with respect to recently found symplectic structures for those maps. The proof is based on explicit formulae for the Poisson brackets between multi-sums of products.Comment: 24 page

    Large-scale albuminuria screen for nephropathy models in chemically induced mouse mutants

    Get PDF
    Background/Aim: Phenotype-driven screening of a great pool of randomly mutant mice and subsequent selection of animals showing symptoms equivalent to human kidney diseases may result in the generation of novel suitable models for the study of the pathomechanisms and the identification of genes involved in kidney dysfunction. Methods: We carried out a large-scale analysis of ethylnitrosourea (ENU)-induced mouse mutants for albuminuria by using qualitative SDS-polyacrylamide gel electrophoresis. Results: The primary albuminuria screen preceded the comprehensive phenotypic mutation analysis in a part of the mice of the Munich ENU project to avoid loss of mutant animals as a consequence of prolonged suffering from severe nephropathy. The primary screen detected six confirmed phenotypic variants in 2,011 G1 animals screened for dominant mutations and no variant in 48 G3 pedigrees screened for recessive mutations. Further breeding experiments resulted in two lines showing a low phenotypic penetrance of albuminuria. The secondary albuminuria screen was carried out in mutant lines which were established in the Munich ENU project without preceding primary albuminuria analysis. Two lines showing increased plasma urea levels were chosen to clarify if severe kidney lesions are involved in the abnormal phenotype. This analysis revealed severe albuminuria in mice which are affected by a recessive mutation leading to increased plasma urea and cholesterol levels. Conclusion: Thus, the phenotypic selection of ENU-induced mutants according to the parameter proteinuria in principle demonstrates the feasibility to identify nephropathy phenotypes in ENU-mutagenized mice. Copyright (C) 2005 S. Karger AG, Basel

    Exploring the corporate image formation process

    Get PDF
    Purpose - This paper aims to demonstrate the need to explore the image formation process to develop a more holistic definition of corporate image. Diminishing trust in managers has created increasingly negative perceptions toward corporations. Stakeholders are constantly evaluating and scrutinizing corporations to determine their trustworthiness and authenticity. To develop their perceptions toward these corporations, stakeholders rely on the key role of corporate image. In the present study, the complex relationships between corporate image, corporate reputation, corporate communication and corporate personality are investigated. These concepts form a corporation’s image formation process. Design/methodology/approach - Radley Yelday (RY), the communications agency collaborating in this research, facilitated 15 interviews with their employees. Using a semi structured interviewing method, discussions were guided toward the topic of corporate image among the respondents. Findings - Findings reveal the importance of corporate image under seven different dimensions: visual expression, positive feelings, environments expression, online appearance, staff/employees appearance, attitude and behavior and external communications (offline, online and effectiveness). Theoretical and managerial implications are discussed with suggestions for future researches. Originality/value - The authors develop a conceptual model that illustrates the corporate image formation process. The model includes seven dimensions – both with tangible and intangible aspects – forming corporate communication and corporate personality. These, in turn, translate into the corporate image. With time and experiences, corporate image creates a more consistent reputation, which consists of five different levels: awareness, familiarity, favorability, trust and advocacy. As demonstrated in this research, the seven key dimensions influencing this process are: visual expression, positive feelings, environment, online appearance, staff/employees appearance, attitude and behavior and external communications

    ProfPPIdb: Pairs of physical protein-protein interactions predicted for entire proteomes

    Get PDF
    Motivation Protein-protein interactions (PPIs) play a key role in many cellular processes. Most annotations of PPIs mix experimental and computational data. The mix optimizes coverage, but obfuscates the annotation origin. Some resources excel at focusing on reliable experimental data. Here, we focused on new pairs of interacting proteins for several model organisms based solely on sequence-based prediction methods. Results We extracted reliable experimental data about which proteins interact (binary) for eight diverse model organisms from public databases, namely from Escherichia coli, Schizosaccharomyces pombe, Plasmodium falciparum, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, Rattus norvegicus, Arabidopsis thaliana, and for the previously used Homo sapiens and Saccharomyces cerevisiae. Those data were the base to develop a PPI prediction method for each model organism. The method used evolutionary information through a profile-kernel Support Vector Machine (SVM). With the resulting eight models, we predicted all possible protein pairs in each organism and made the top predictions available through a web application. Almost all of the PPIs made available were predicted between proteins that have not been observed in any interaction, in particular for less well-studied organisms. Thus, our work complements existing resources and is particularly helpful for designing experiments because of its uniqueness. Experimental annotations and computational predictions are strongly influenced by the fact that some proteins have many partners and others few. To optimize machine learning, recent methods explicitly ignored such a network-structure and rely either on domain knowledge or sequence-only methods. Our approach is independent of domain-knowledge and leverages evolutionary information. The database interface representing our results is accessible from https://rostlab.org/services/ppipair/. The data can also be downloaded from https://figshare.com/collections/ProfPPI-DB/4141784

    Cognitive Bias Modification: Induced Interpretive Biases Affect Memory

    Get PDF
    Previous research has shown that it is possible to experimentally induce interpretive biases using ambiguous scenarios. This study extends past findings by examining the effects of manipulating interpretation on subsequent memory. Participants were trained to interpret emotionally ambiguous passages in either a positive or negative direction. Transfer of the training to novel scenarios was tested. Following training, participants were also asked to recall details from these novel scenarios. The results indicate that the training was effective in inducing the intended group differences in interpretive bias. Importantly, participants exhibited memory biases that corresponded to their training condition. These results suggest that manipulating interpretive biases can result in corresponding changes in memory. Findings from this study highlight the importance of future research on the relation among cognitive biases and on the possibility of modifying cognitive biases in emotional disorders

    The Outstanding Decisions of the United States Supreme Court in 1954

    Get PDF
    We perform a kinematic and morphological analysis of 44 star-forming galaxies at z ̃ 2 in the COSMOS legacy field using near-infrared spectroscopy from Keck/MOSFIRE and F160W imaging from CANDELS/3D-HST as part of the ZFIRE survey. Our sample consists of cluster and field galaxies from 2.0 < z < 2.5 with K-band multi-object slit spectroscopic measurements of their Hα emission lines. Hα rotational velocities and gas velocity dispersions are measured using the Heidelberg Emission Line Algorithm (HELA), which compares directly to simulated 3D data cubes. Using a suite of simulated emission lines, we determine that HELA reliably recovers input S 0.5 and angular momentum at small offsets, but V 2.2/σ g values are offset and highly scattered. We examine the role of regular and irregular morphology in the stellar mass kinematic scaling relations, deriving the kinematic measurement S 0.5, and finding {log}({S}0.5)=(0.38+/- 0.07){log}(M/{M}☉ -10)+(2.04+/- 0.03) with no significant offset between morphological populations and similar levels of scatter (̃0.16 dex). Additionally, we identify a correlation between M ⋆ and V 2.2/σ g for the total sample, showing an increasing level of rotation dominance with increasing M ⋆, and a high level of scatter for both regular and irregular galaxies. We estimate the specific angular momenta (j disk) of these galaxies and find a slope of 0.36 ± 0.12, shallower than predicted without mass-dependent disk growth, but this result is possibly due to measurement uncertainty at M ⋆ < 9.5 However, through a Kolmogorov-Smirnov test we find irregular galaxies to have marginally higher j disk values than regular galaxies, and high scatter at low masses in both populations

    Petrographic Characteristics and Depositional Environment Evolution of Middle Miocene Sediments in the Thien Ung - Mang Cau Structure of Nam Con Son Basin

    Full text link
    This paper introduces the petrographic characteristics and depositional environment of Middle Miocene rocks of the Thien Ung - Mang Cau structure in the central area of Nam Con Son Basin based on the results of analyzing thin sections and structural characteristics of core samples. Middle Miocene sedimentary rocks in the studied area can be divided into three groups: (1) Group of terrigenous rocks comprising greywacke sandstone, arkosic sandstone, lithic-quartz sandstone, greywacke-lithic sandstone, oligomictic siltstone, and bitumenous claystone; (2) Group of carbonate rocks comprising dolomitic limestone and bituminous limestone; (3) Mixed group comprising calcareous sandstone, calcarinate sandstone, arenaceous limestone, calcareous claystone, calcareous silty claystone, dolomitic limestone containing silt, and bitumen. The depositional environment is expressed through petrographic characteristics and structure of the sedimentary rocks in core samples. The greywacke and arkosic sandstones are of medium grain size, poor sorting and roundness, and siliceous cement characterizing the alluvial and estuarine fan environment expressed by massive structure of core samples. The mixed calcareous limestone, arenaceous dolomitic limestone, and calcareous and bituminous clayey siltstone in the core samples are of turbulent flow structure characterizing shallow bay environment with the action of bottom currents. The dolomitic limestones are of relatively homogeneous, of microgranular and fine-granular texture, precipitated in a weakly reducing, semi-closed, and relatively calm bay environment
    corecore