296 research outputs found

    Amyloid-b seeding and propagation processes in a hAb-KI model of Alzheimer's disease

    Get PDF
    Recent evidence indicates that Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process. Several studies using FAD animal models have demonstrated that intracerebral infusion of brain extracts from APP-transgenic mice or AD patients induce Aβ deposition and cerebral amyloid angiopathy. To carry out most of these Aβ-seeding studies, APP-transgenic animal have been used. Nevertheless, it remains to be elucidated whether Aβ deposition can be induced by Aβ-seeds in a sporadic AD model that does not overexpress APP and produces wild type human Aβ. We used an innovative model to better understand the amyloidogenic events that occur in sporadic AD. This hAβ-KI model, expresses wild-type human Aβ under the control of the endogenous mouse APP gene. Aβ-seeds from AD patients (stage C) from the AD Research Center (UCI) were administered into 7-8-month-old hAβ-KI and as positive controls 3xTg-AD mice were employed. We demonstrated that amyloid seeds can stimulate Aβ aggregations in 3xTg-AD and hAβ-KI models. We found that Aβ aggregates occur earlier in the 3xTg-AD vs hAβ-KI and that a longer term of treatment is necessary to accelerate diffusible Aβ pathology in the hAβ-KI mice. Thereferoe, this hAβ-KI model represents an important step towards the development of next-generation animal models that will provide better predictive outcomes for human patients. Grants support: UCI MIND Pilot project (DBV), Ministry of Science PID2019-108911RA-100 (DBV), U54 AG054349 (FML), Institute of Health Carlos III PI18/01557 (AG) co-financed by FEDER funds (European Union), NIH/NIA Grant P50 AG16573 (UCI-ADRC).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Human amyloid seeds aggregate more efficient than seeds from old 3xtg-ad mice

    Get PDF
    Aims: Most age-associated neurodegenerative disorders involve the aggregation of specific proteins within the nervous system, as occurs in Alzheimer’s disease (AD). Recent evidence indicates that Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process of template protein corruption or seeding. In fact, studies in animal models show that the injection of brain homogenates from AD patients or from aged APP-transgenic mice containing Aβ aggregates, can induce some of the neuropathological hallmarks of AD. However, it is still unknown which Aβ-misfolded species are most efficient in triggering the aggregation process. Here, we seek to perform a comparative study to determine whether Aβ seeds from humans vs a familial AD line (the 3xTg-AD model) is more efficient to generate amyloid aggregates. Methods: We employed histological and molecular approaches to determine amyloid level, species and aggregative capacity of brain homogenates from an AD patient (stage C for amyloid, from the Alzheimer’s Disease Research Center at UCI) vs old-3xTg-AD mice (25-month-old). Such brain homogenates were injected into the hippocampus of 7-month-old 3xTg-AD mice and the mice were analyzed at 18 months of age. Results: Our findings demonstrated that amyloid seeds from the human patient have more capacity to generate Aβ plaques vs seeds from aged 3xTg-AD mice. Conclusions: These results suggest that seeds from human patients seem to be more amyloidogenic than from aged 3xTg-AD mice. Thus, more profound understanding these factors will provide key insight on how amyloid pathology progress in AD.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Human and mouse seeds differentially affect AB aggregation by modulating the inflammatory response.

    Get PDF
    Abstract text: Alzheimer’s Disease (AD) is a neurodegenerative proteinopathy in which Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prionlike process. These amyloid aggregation and propagation processes are influenced by three factors: the origin of the Aβ seed, time of incubation and host. However, the mechanism underlying the differential effect of each factor is poorly known. Previous studies have shown that the Aβ source is relevant for the amyloid process, since its pathogenicity is different according to its origin. Furthermore, recent evidence suggests that microglia plays a key role in the amyloidogenic event, and can modulate the propagation and aggregation process. Here, we seek to perform a comparative study to determine whether Aβ seeds from humans vs a familial AD line (the 3xTg-AD model) are more efficient to generate amyloid aggregates, as well as the role of the microglia in the propagation process. Methods: Amyloid seeds from AD patient (stage C for amyloid; from the Alzheimer’s Disease Research Center at UCI) and 25 mo-3xTg-AD mice were injected into the hippocampus of 7-8- month-old 3xTg-AD mice. They were analyzed 10 months post-surgery for amyloid and microglia markers. Results: Our findings demonstrated that amyloid seeds from the human patient seem to induce a more aggressive amyloid pathology compared to seeds from aged 3xTg-AD mice. Moreover, human and mice seeds differentially affect the presence of plaque-associated microglia in 3xTgAD mice. Conclusion: These results suggest that seeds from human patients seem to be more amyloidogenic than from aged 3xTg-AD mice, and also microglia cells may play a key role in this differential effect. Therefore, more profound understanding these factors will provide key insight on how amyloid pathology progresses in AD.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Amyloid propagation in a sporadic model of Alzheimer disease

    Get PDF
    Most age-associated neurodegenerative disorders involve the aggregation of specific proteins within the nervous system, as occurs in Alzheimer’s disease (AD). Recent evidence indicates that Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process of template protein corruption or seeding. In fact, studies in FAD-based animal models show that Aβ deposition and cerebral amyloid angiopathy may be induced by intracerebral infusion of brain extracts from AD patients or from aged APP-transgenic mice. These studies have shown that the characteristic of both the seeding agent and the host influence the pathologic signature of the Aβ seeds. In this regard, the majority of the Aβ-seeding studies have been done in APP-transgenic animal models that overproduce APP and/or Aβ. However, it remains to be elucidated whether Aβ deposition can be induced by Aβ seeds in an animal model that does not overexpress APP and produces wild type human Aβ and if these aggregates are similar to the human condition. Here, we used an innovative animal model to better understand the amyloidogenic events that occur in the sporadic form of the disease. Our model, termed hAβ-KI, expresses wild-type human Aβ under the control of the endogenous mouse APP gene. Thus, amyloid seeds from AD patients (stage C for amyloid) from the Alzheimer’s Disease Research Center (ADRC) at UCI were administered into 7-8-month-old hAβ-KI and as positive controls 3xTg-AD mice were employed. Our findings demonstrated that amyloid seeds differentially occur in 3xTg-AD and hAb-KI mice and these aggregates are developed earlier in the familial model, 3xTg-AD mice. These results suggest that multiple factors such as the seed, recipient model and time are critical factors that can modulate the amyloid pathology onset and progression. Thus, more profound understanding these factors will provide key insight on how amyloid pathology progress in AD.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Swarm Learning for decentralized and confidential clinical machine learning

    Get PDF
    Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine

    C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat

    Human and mouse seeds differentially affect Aβ aggregation by modulating the inflammatory response

    Get PDF
    Background: Alzheimer’s Disease (AD) is a neurodegenerative proteinopathy in which Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process. These amyloid aggregation and propagation processes are influenced by three factors: the origin of the Aβ seed, time of incubation and host. However, the mechanism underlying the differential effect of each factor is poorly known. Previous studies have shown that the Aβ source is relevant for the amyloid process, since its pathogenicity is different according to its origin. Furthermore, recent evidence suggests that microglia plays a key role in the amyloidogenic event, and can modulate the propagation and aggregation process. Here, we seek to perform a comparative study to determine whether Aβ seeds from humans vs a familial AD line (the 3xTg-AD model) are more efficient to generate amyloid aggregates, as well as the role of the microglia in the propagation process. Method: Amyloid seeds from AD patient (stage C for amyloid; from the Alzheimer’s Disease Research Center at UCI) and 25 mo-3xTg-AD mice were injected into the hippocampus of 7-8-month-old 3xTg-AD mice. They were analyzed 10 months postsurgery for amyloid and microglia markers. Result: Our findings demonstrated that amyloid seeds from the human patient seem to induce a more aggressive amyloid pathology compared to seeds from aged 3xTg-AD mice. Moreover, human and mice seeds differentially affect the presence of plaqueassociated microglia in 3xTg-AD mice. Conclusion: These results suggest that seeds from human patients seem to be more amyloidogenic than from aged 3xTg-AD mice, and also microglia cells may play a key role in this differential effect. Therefore, more profound understanding these factors will provide key insight on how amyloid pathology progresses in AD.This study was supported by Minister of Science and Innovation grant PID2019-108911RA-100 (D.B.V.), Alzheimer’s Association grant AARG-22-928219 (D.B.V), Beatriz Galindo program BAGAL18/00052 (D.B.V.) and Institute of Health Carlos III (ISCiii) grant PI18/01557 (A.G.) co-financed by FEDER funds from European Union

    Burn injury leads to increased long-term susceptibility to respiratory infection in both mouse models and population studies

    Get PDF
    Background: Burn injury initiates an acute inflammatory response that subsequently drives wound repair. However, acute disruption to the immune response is also common, leading to susceptibility to sepsis and increased morbidity and mortality. Despite increased understanding of the impact of burn injury on the immune system in the acute phase, little is known about longterm consequences of burn injury on immune function. This study was established to determine whether burn injury has long-term clinical impacts on patients' immune responses. Methods: Using a population-based retrospective longitudinal study and linked hospital morbidity and death data from Western Australia, comparative rates of hospitalisation for respiratory infections in burn patients and a non-injured comparator cohort were assessed. In addition, a mouse model of non-severe burn injury was also used in which viral respiratory infection was induced at 4 weeks post-injury using a mouse modified version of the Influenza A virus (H3NN; A/mem/71-a). Results and conclusions: The burn injured cohort contained 14893 adult patients from 1980-2012 after removal of those patients with evidence of smoke inhalation or injury to the respiratory tract. During the study follow-up study a total of 2,884 and 2,625 respiratory infection hospital admissions for the burn and uninjured cohorts, respectively, were identified. After adjusting for covariates, the burn cohort experienced significantly elevated admission rates for influenza and viral pneumonia (IRR, 95%CI: 1.73, 1.27-2.36), bacterial pneumonia (IRR, 95%CI: 2.05, 1.85-2.27) and for other types of upper and lower respiratory infections (IRR, 95% CI: 2.38, 2.09-2.71). In the mouse study an increased viral titre was observed after burn injury, accompanied by a reduced CD8 response and increased NK and NKT cells in the draining lymph nodes. This data suggests burn patients are at long-term increased risk of infection due to sustained modulation of the immune response

    Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis

    Get PDF
    Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since &gt;280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.</p

    Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis

    Get PDF
    Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.This study received funding from Novartis. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication. This work was supported by grants from Foundation Fighting Blindness Career Development Award CDGE-0621-0809-RAD (SR), Foundation Fighting Blindness project program award PPA-0123-0841-UCL (SR and SdB), Retinitis Pigmentosa Fighting Blindness, Fight for Sight UK (RP Genome Project GR586), Ghent University Special Research Fund (BOF20/GOA/023) (EDB and BL); EJP RD Solve-RET EJPRD19-234 (EDB, BL, SB, CR, FC, and SR). EDB (1802220N) and BL (1803816N) are FWO Senior Clinical Investigators of the Research Foundation Flanders (FWO). EDB, BL, SB, FC, and SR are members of ERN-EYE (Framework Partnership Agreement No. 739534)
    corecore